
WG20 Motorreductores - Manual de puesta en marcha, instalación y montaje

1.	Condiciones generales	ES-3
	1.1. Instrucciones de seguridad	ES-3
	1.2. Información general	ES-3
	1.3. Exclusión de responsabilidad	ES-4
•	1.4. Indicación sobre el copyright y los derechos de propiedad intelectual	ES-4
2.	Seguridad general	ES-5
3.	Descripción del reductor/motorreductor	ES-6
	3.1. Placa de características 3.2. Designación de modelo	ES-6 ES-7
4.	Transporte	ES-7
5.	Almacenamiento	ES-9
6.	Estructura del reductor	ES-10
0.	6.1. Diseño básico de la unidad de engranajes helicoidal C	ES-10
	6.2. Diseño básico de la unidad de engranajes helicoldar C	ES-11
	6.3. Diseño básico unidad ortogonal de engranajes K	ES-15
7.	Instalación mecánica	ES-17
	7.1. Trabajos previos en el reductor	ES-17
	7.2. Trabajos previos en el motor	ES-18
	7.3. Instalación del reductor/motorreductor	ES-20
8.	Lista de comprobación: reductor	ES-27
9.	Lista de comprobación: motor	ES-28
10.	Puesta en marcha	ES-28
	10.1. Conexión eléctrica del motor	ES-28
	10.2. Sentido de giro	ES-29
	10.3. Nivel de aceite del reductor suministrado	ES-29
11.	Funcionamiento	ES-29
12.	Fallos de funcionamiento	ES-30
13.	Inspección y mantenimiento	ES-31
	13.1. Intervalos de inspección y mantenimiento	ES-31
14.	13.2. Trabajos de inspección y mantenimiento del reductor Lubricantes	ES-32 ES-33
15.	Posiciones de montaje y cantidades de lubricante	ES-34
	15.1. Reductor coaxial C 15.2. Reductor de ejes paralelos F	ES-34 ES-36
	15.3. Reductor de ejes paraielos i 15.3. Reductores ortogonales de engranajes K	ES-37
16.	Posición de la caja de bornas y entrada de cables	ES-38
17.	Conexiones de caja de bornas	ES-38
18.	Dispositivos opcionales del motor	ES-40
	18.1. Resistencia de caldeo	ES-40
	18.2. Orificio para el agua de condensación	ES-40
	18.3. Ventilación forzada	ES-40
	 Sondas de temperatura – Interruptores bimetálicos (TH) 	ES-41
	18.5. Sensor de temperatura tipo posistor (TF)	ES-41
	18.6. Freno	ES-41
19.	Tabla de pares de apriete de los tornillos	ES-44
20.	Eliminación de desechos	ES-44
21.	Declaración de incorporación	ES-45
22.	Declaración de conformidad UE ATEX 2014/34/UE	ES-46
23.	Declaración de conformidad UE Directiva 2014/35/UE de baja tensión	ES-48

1. Condiciones generales

1.1. Instrucciones de seguridad

Es imprescindible tener en cuenta estas indicaciones de seguridad y de advertencia!

iPELIGRO!

Advertencia en caso de peligro de naturaleza eléctrica o mecánica

¡CUIDADO!

Instrucciones importantes para el funcionamiento seguro y sin averías

iATEX!

Información importante sobre protección contra explosiones

1.2. Información general

El presente manual de montaje (MM) forma parte del volumen de suministro del reductor y se debe leer antes de empezar a trabajar con este. Es imprescindible cumplir las instrucciones del MM. Guarde el MM cerca del reductor. Se declina toda responsabilidad por los daños y anomalías de funcionamiento que se deriven del incumplimiento de este MM.

El fabricante se reserva el derecho a introducir modificaciones en los componentes y grupos constructivos individuales con motivo de su desarrollo, siempre y cuando se conserven las características principales del producto y se considere que suponen una mejora razonable del mismo.

Clase de protección:

El grado de protección de los reductores corresponde a la clase de protección IP65.

Los motores se fabrican con una clase de protección IP55 o superior (véase la placa de características).

Utilización conforme al uso previsto:

Los reductores/motorreductores están concebidos exclusivamente para generar un determinado movimiento rotatorio en el interior de máquinas e instalaciones. Los reductores cumplen con lo indicado en la directiva 2006/42/CE relativa a las máquinas.

Toda utilización que difiera o vaya más allá de lo expuesto anteriormente se considerará no conforme al uso previsto. Cualquier daño que resulte de dicha circunstancia será responsabilidad exclusiva del usuario /explotador de la máquina /instalación.

Es imprescindible tener en cuenta y cumplir todas las indicaciones recogidas en este manual de montaje, en la placa de características y en la documentación técnica restante o asociada.

Utilización del motor conforme al uso previsto:

Los motores cumplen los requisitos básicos de la directiva de baja tensión 2014/35/UE. Están concebidos para funcionar tanto con alimentación directa como a través de un convertidor de frecuencia.

La versión estándar de los motores se ha diseñado para operar en las condiciones siguientes:

- Temperatura ambiente: -20°C (-4°F) a +40°C (104°F)
- Altitud de instalación ≤ 1000m (sobre el nivel del mar)

:ATEX!

Uso previsto en el área ATEX:

Reductores WG20 con adaptadores IEC:

Los reductores WG20 en ejecución ATEX cumplen con las normas y especificaciones válidas, así como con los requisitos de la Directiva 2014/34/UE. Los motores que no están aprobados para el área ATEX no deben conectarse a los reductores WG20 cuando se usan en áreas peligrosas.

Los tipos de reductores a prueba de explosión (explosión proof)

- C ... Reductor coaxial de engranajes helicoidales
- F... Reductor de ejes paralelos de engranaje helicoidal
- K... Reductor ortogonal con engranaje cónicos y helicoidal

cumplen con las especificaciones de diseño de

- Grupo de equipos II, Categoría 2G + 2D (Zona 1 + 21)
- Grupo de equipos II, Categoría 3G + 3D (Zona 2 + 22)

Motorreductores WG20:

Los motorreductores WG20 en ejecución ATEX cumplen con los estándares y especificaciones válidos, así como con los requisitos según la Directiva 2014/34/UE.

Los tipos de motorreductores a prueba de explosión

- C...Motorreductor coaxial de engranaje helicoidal
- F...Motorreductor de ejes paralelos de engranaje helicoidal
- K...Motorreductor ortogonal de engranaje cónico y helicoidal

Cumplen con las especificaciones de diseño de

■ Grupo de equipos II, Categoría 3G + 3D (Zona 2 + 22)

Temperatura ambiente:

Los reductores y motorreductores WG20 utilizados en la ejecución de ATEX solo se pueden utilizar en áreas con temperaturas ambiente entre -20 $^{\circ}$ C y +40 $^{\circ}$ C.

Altitud:

≤ 1000 m (sobre el nivel del mar)

1.3. Exclusión de responsabilidad

El cumplimiento del MM es un requisito fundamental para que el funcionamiento del reductor /motorreductor resulte seguro y para alcanzar las prestaciones y características de rendimiento indicadas para el producto.

El fabricante declina toda responsabilidad en relación con los daños personales, materiales o patrimoniales que se deriven del incumplimiento del MM. En estos casos se excluye toda responsabilidad por vicios ocultos.

1.4. Indicación sobre el copyright y los derechos de propiedad intelectual

Todos los documentos técnicos están protegidos por copyright. Se prohíbe su copia, reproducción o distribución, total o parcial, así como cualquier otro tipo de explotación, si no se dispone de autorización expresa por escrito.

2. Seguridad general

La responsabilidad de instalar correctamente el accionamiento recae sobre el instalador.

Para que las propiedades del accionamiento se vean confirmadas, así como para poder responder a las potenciales reclamaciones en garantía, es imprescindible cumplir las indicaciones recogidas en este manual de montaje.

¡Tenga en cuenta que los productos dañados no se deben poner nunca en funcionamiento!

Lea atentamente el manual de montaje antes de comenzar los trabajos de instalación, montaje o mantenimiento.

El montaje, la puesta en marcha y los trabajos de mantenimiento y reparación en el reductor /motorreductor y en el equipamiento eléctrico adicional deben ser efectuados exclusivamente por personal técnico que cuente con una cualificación apropiada y teniendo en cuenta los elementos siguientes:

- Manual de montaje
- Placas con indicaciones situados en el reductor /motorreductor
- Toda la documentación restante del proyecto e instrucciones de puesta en marcha relativas al accionamiento
- Disposiciones y requisitos específicos del equipo
- Prescripciones aplicables vigentes de carácter nacional y regional relativas a la seguridad y a la prevención de accidentes

iPELIGRO!

Todos los trabajos se deben llevar a cabo exclusivamente bajo las siguientes condiciones:

- con el accionamiento detenido.
- con la tensión eléctrica desconectada
- y protegido de manera que no se pueda volver a conectar accidentalmente.

El funcionamiento del motorreductor mediante un convertidor de frecuencia solo está permitido si se cumplen los datos recogidos en la placa de características del motor.

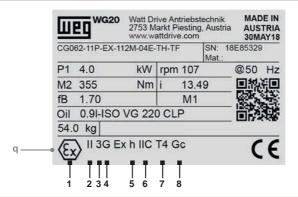
iATEX!

El uso de reductores o motorreductores en ambientes con gases inflamables o alta concentraciones de polvo inflamable, que son capaces de explotar o deflagrar en combinación con piezas calientes, de carga y móviles, puede provocar la muerte o lesiones graves.



3. Descripción del reductor/motorreductor

3.1. Placa de características


Todos los datos de la placa de características del reductor definen los límites de su utilización conforme al uso previsto. El cumplimiento de estos datos es obligatorio.

Las demás características técnicas y los planos se deben consultar en la versión más actual del catálogo de motorreductores.

а	Designación de modelo	i	Fecha de fabricación
b	Potencia	j	Número de reductor
С	Par nominal	k	Número de material
d	Factor de servicio	-1	Número de revoluciones / Frequencia
е	Tipo y cantidad de aceite	m	Relación de reducción
f	Peso	n	Posición de montaje
g	Fabricante	0	Código QR con link a datos adicionales
h	País de fabricación	р	Espacio para información adicional

€∞ ¡ATEX!

Placa de identificación WG20 con ejecucion ATEX (ejemplo)

q	Código ATEX					
	Directiva ATEX 2014/34/EU		Estándar EN ISO 80079-36/-37			
	1	Identificacion Ex	5	Tipo de protección		
	2	Equipo Grupo	6	Grupo explosión		
	3	Equipo Categoria	7	Clase temperatura / max. Temperatura exterior		
	4	Atmosfera	8	Nivel de protección del equipo (EPL)		

3.2. Designación de modelo

Designación de modelo (ejemplo)	CG02-11N-63-04F-TH-TF-BR2	FH032-11P-80-04F-TH-TF-BR8	KH022-11N-63-04F-TH-TF
Serie	C (Reductor helicoidal)	F (Reductor de ejes paralelos)	K (Reductor ortogonal)
Versiones posibles del reductor	CA Patas y brida salida IEC-B5 con eje de salida macizo CC Brida salida B14 con eje de salida macizo CF Brida salida IEC-B5 con eje de salida macizo CG Patas con eje de salida macizo CW Patas con Brida salida B14 y eje salida macizo	FB Eje de salida macizo doble FD Eje de salida hueco y aro de apriete FF Brida salida IEC-B5 con eje de salida macizo FH Eje de salida hueco FO Brida salida IEC-B5 con eje salida hueco FP Brida salida IEC-B5 con eje salida hueco y aro de apriete FS Eje salida macizo simple FT Eje salida hueco y kit de fijación pendular FU Eje de salida hueco con aro de apriete y kit de fijación pendular	KB Eje de salida macizo doble KD Eje de salida hueco y aro de apriete KF Brida salida IEC-B5 con eje de salida macizo KH Eje de salida hueco KO Brida salida IEC-B5 con eje salida hueco KP Brida salida IEC-B5 con eje salida hueco y aro de apriete KS Eje salida macizo simple KT Eje salida macizo simple KT Eje salida hueco y brazo de reacción KU Eje de salida hueco con aro de apriete y brazo de reacción
Tamaños posibles del reductor	00, 01, 03, 05, 06, 07, 08, 09, 10, 13, 14, 16	02, 03, 04, 05, 06, 07, 08, 09, 10, 12, 15	02, 03, 04, 05, 06, 07, 08, 09, 10, 12, 15
Número de etapas	00, 01: 2 etapas 03-16: 2 ó 3 etapas	02, 03: 2 etapas 04-15: 2 ó 3 etapas	02: 2 etapas 03-15: 3 etapas

Variantes de entrada al reductor		
63 250	Tamaño constructivo de motor	
I	Adaptador de entrada para motor IEC	
N	Adaptador de entrada para motor NEMA	
S	Adaptador de entrada para SERVOMOTOR	
U	Eje de entrada macho cilíndrico	

Dispositivos adicionales del motor optativos				
Designación de modelo (ejemplo)	11P 100L-04F SH K1 KB MIP BRH32 FL SD			
11P 100L-04F	Tipo de motor			
TH, TF, KTY	Sonda de temperatura			
FL	Ventilación forzada			
IG, SG	Encoder incremental			
BR	Freno			
BBR	Freno doble			
BRH	Freno con palanca de liberación manual			
BRHA	Freno con palanca de liberación manual y con bloqueo			
KKM, RSM	Antirretorno			
U, UW	Sin ventilación			
KB	Agujero de drenaje para agua de condensación			
SH	Resistencia de caldeo			
K1, K2	Protección climática			
MIP, MIG	Versión de la caja de bornas			
SD	Sombrerete			
HR	Volante manual			
ZM	Ventilador metálico			
ZL	Ventilador con volante de inercia			
ZWM, ZWV	Eje de salida posterior			

4. Transporte

Una vez recibido el equipo, se debe comprobar que no presente daños debidos al transporte. En tal caso, se debe descartar su puesta en marcha y ponerse en contacto con el vendedor.

Equipamiento para la elevación y manejo de los motorreductores:

Motorreductor coaxial C					
	Tamaño del reductor	Tamaño del motor	Manejo de la carga		
	C00 C01	todos Sin elementos para la elevación y manejo de los		-	
		63 - 71	motorreductores	-	
1 2	C03 C05	80 - 90	Argolla de elevación en el reductor	1	
<60°	C06	100 - 132	Argolla de elevación en el reductor + argolla de elevación en el motor (ángulo máximo entre las eslingas de 60°)	2	
	C07 C08	63 - 90	Argolla de elevación en el reductor	1	
	C08 C09 C10 C13 C14 C16	100 - 250	Argolla de elevación en el reductor + argolla de elevación en el motor (ángulo máximo entre las eslingas de 60°)	2	

Motorreductor de ejes paralelos F					
	Tamaño del reductor	Tamaño del motor	Manejo de la carga		
	F02	todos	Sin elementos para la	-	
, ²		63 - 71	elevación y manejo de los motorreductores		
€60°	F03 F04	80 - 90	Soporte en el reductor	1	
	F04 F05	100 - 132	Soporte en el reductor + argolla de elevación en el motor (ángulo máximo entre las eslingas de 60°)	2	
	F06	63 - 90	Soporte en el reductor	1	
	F07 F08 F09 F10 F12 F15	100 - 250	Soporte en el reductor + argolla de elevación en el motor (ángulo máximo entre las eslingas de 60°)	2	

Motorreductor ortogonal K				
2	Tamaño del reductor	Tamaño del motor	Manejo de la carga	
1 2	K02	todos	Sin elementos para la elevación y manejo de los	-
		63 - 71	motorreductores	-
	K03 K04	80 - 90	Argolla de elevación en el reductor	1
	K05	100 - 132	Argolla de elevación en el reductor + argolla de elevación en el motor (ángulo máximo entre las eslingas de 60°)	2
K06 K07 K08 K09 K10 K12 K15	K07 K08	63 - 90	Argolla de elevación en el reductor	1
	100 - 250	Argolla de elevación en el reductor + argolla de elevación en el motor (ángulo máximo entre las eslingas de 60°)	2	

Almacenamiento

Condiciones generales:

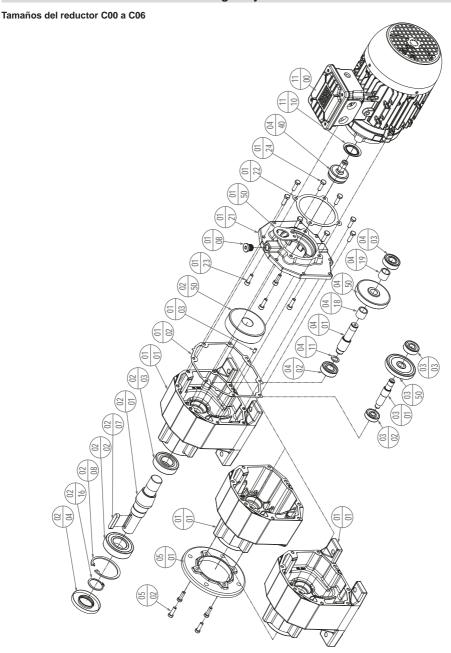
Para almacenar los reductores se deben tener en cuenta los siguientes puntos:

- El almacenamiento de las unidades de accionamiento debe realizarse por lo general en espacios cerrados.
- Temperatura ambiente máx. 25 °C (77 °F)
- Humedad relativa del aire máx. 80 %
- Las unidades de accionamiento se deben proteger contra la radiación solar y la luz ultravioleta.
- Prohibido almacenar sustancias agresivas y corrosivas en su entorno.
- El almacenamiento del reductor se debe llevar a cabo en la misma posición de montaje prevista para su utilización posterior.
- Cada 6 meses se debe hacer girar 1-2 vueltas el eje de salida del reductor para garantizar que los componentes internos estén humedecidos con lubricante.
- Las unidades se deben proteger de manera que no queden expuestas a cargas mecánicas ni al efecto de agentes externos.

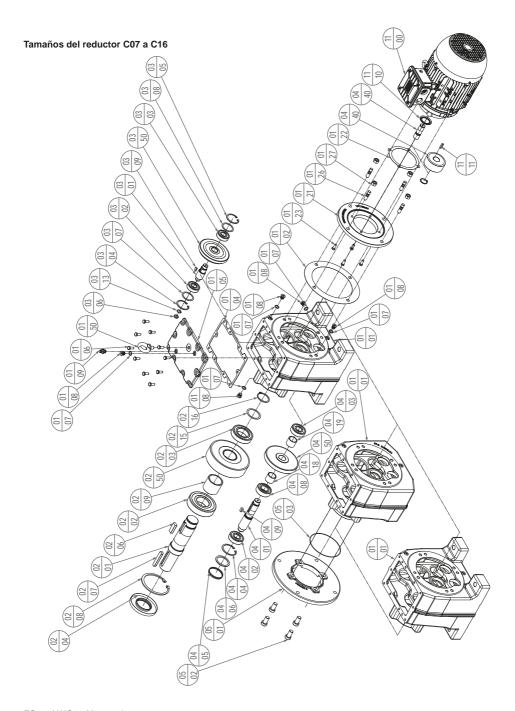
Almacenamiento prolongado:

- Si la duración del almacenamiento es superior a 12 meses, el reductor se debe llenar por completo con el lubricante indicado en la placa de características o en la placa de aceite.
- Las piezas sin recubrimiento expuestas al ambiente se deben tratar con un producto anticorrosivo (es recomendable llevar a cabo un control cada medio año). La protección anticorrosiva se debe renovar al cabo de un año.
- Antes de la puesta en marcha, comprobar el lubricante del reductor. Si este cuenta con varias cámaras de aceite, se deben vaciar todas ellas
- En caso de inactividad prolongada, las juntas se asientan. Antes de la puesta en marcha reapretar los tornillos.
- A continuación, llenar el reductor con el tipo y la cantidad de lubricante que se especifica en la placa de características.
- Si el almacenamiento dura más de 24 meses, antes de la puesta en marcha se debe comprobar la estanqueidad del reductor. Los elementos de sellado se deben sustituir si presentan alguna grieta visible.

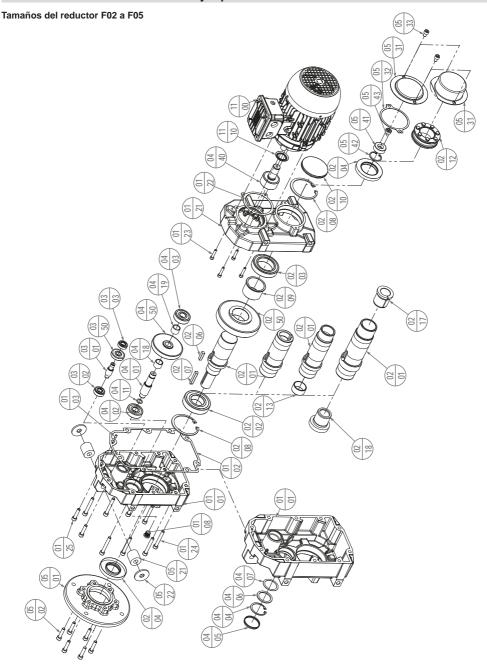
6. Estructura del reductor

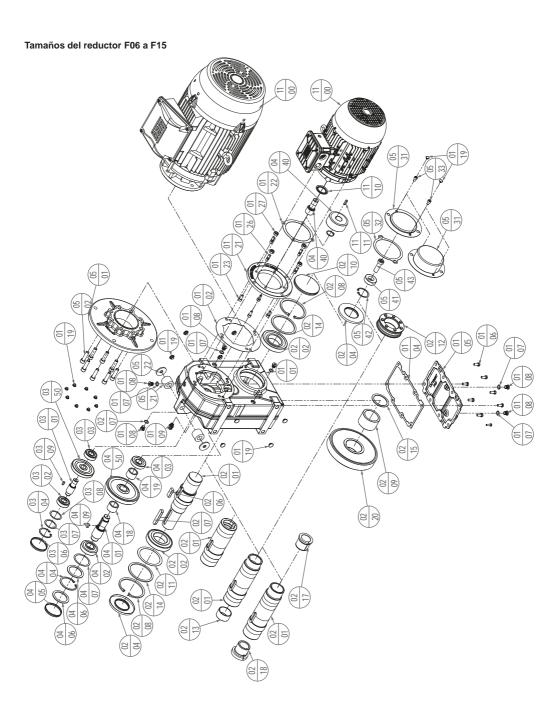

Los planos siguientes muestran la estructura general de las distintas series de reductores. Dentro de cada serie de reductores puede haber diferencias en función del tamaño y de las distintas versiones.

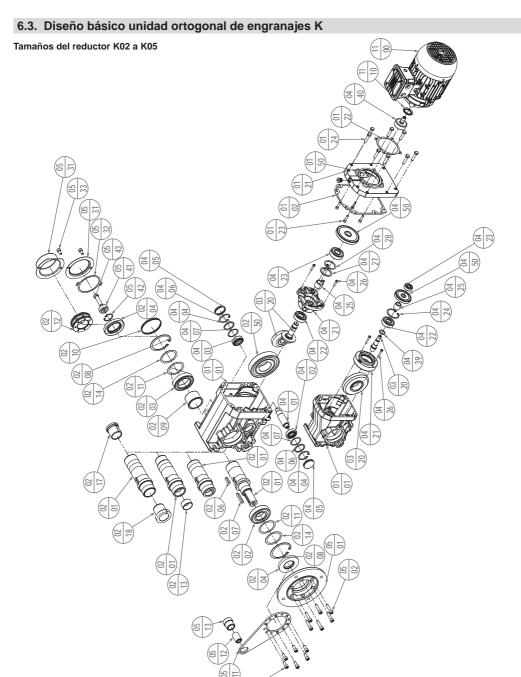
Leyenda para los dibujos en despiece:

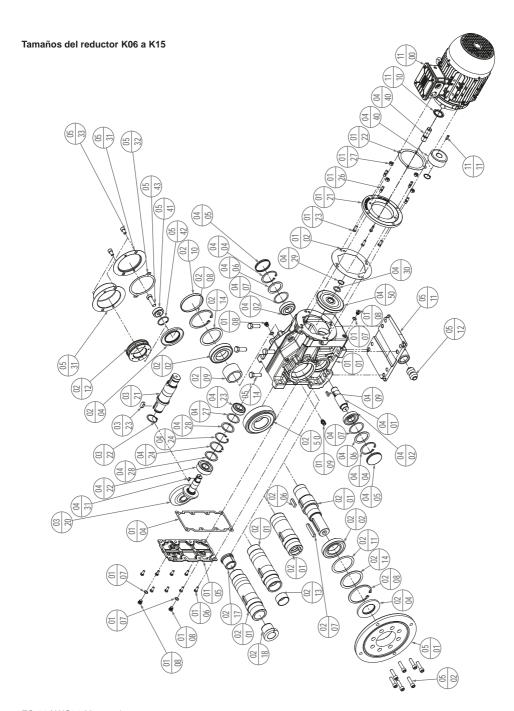

Pos	sición	Descripción	Pos	ición	Descripción
01	00	Kit Caja	04	00	Kit Eje piñón de salida
01	01	Caja	04	01	Eje piñón de salida
01	02	Junta de la caja/del adaptador de motor	04	02	Rodamiento 3
01	03	Pasador	04	03	Rodamiento 4
01	04	Junta de la caja	04	04	Circlip
01	05	Tapa de inspección	04	05	Tapa rodamiento
01	06	Tornillos tapa de inspección	04	06	Arandela /distanciador
01	07	Anillo de cobre	04	07	Aro de ajuste
01	08	Tapón	04	08	Rodamiento 5
01	09	Tapón respiradero	04	09	Chaveta
01	19	Tapón	04	11	Aranela /distanciador
01	20	Kit Tapa cierre caja/Adaptador de motor	04	18	Distanciador ajuste
01	21	Tapa cierre caja/Adaptador de motor	04	19	Distanciador ajuste
01	22	Junta de motor	04	20	Kit Porta rodamientos
01	23	Tornillos Motor	04	21	Porta rodamientos
01	24	Tornillos tapa cierre de la caja	04	22	Rodamiento 5
01	25	Tornillos tapa cierre de la caja	04	23	Rodamiento 6
01	26	Pasador roscado	04	24	Circlip
01	27	Tuerca hexagonal	04	25	Distanciador ajuste
01	50	Argolla de elevación/Cáncamo	04	26	Tornillos
02	00	Kit Eje de salida	04	27	Distanciador
02	01	Eje de salida	04	28	Arandela /distanciador
02	02	Rodamiento 1	04	29	Circlip
02	03	Rodamiento 2	04	30	Arandela /distanciador
02	04	Anillo nylos 1	04	31	Chaveta piñon primer tren
02	06	Chaveta interna para engrane	04	39	Arandela /distanciador
02	07	Chaveta externa	04	40	Soporte piñón cónico
02	08	Circlip 1	04	50	Engranaje 1er tren/Corona intermedia
02	09	Distanciador ajuste	05	00	Kit Brida salida
02	10	Tapa rodamiento	05	01	Brida salida
02	11	Distanciador	05	02	Tornillos de brida
02	12	Aro de compresion	05	03	Junta
02	13	Casquillo antifricción	05	10	Kit Brazo de reacción
02	14	Arandela /distanciador	05	11	Brazo de reacción
02	15	Arandela /distanciador	05	12	Silent block
02	16	Circlip 2	05	13	Casquillo
02	17	Buje de sujección interno	05	14	Tornillo
02	18	Buje de apoyo externo	05	20	Kit Antivibrante
02	50	Engranajes salida	05	21	Amortiguador antivibrante
03	00	Kit Eje piñón intermadio	05	22	Arandela de arresto para amortiguador
03	01	Eje piñón intermedio	05	30	Kit Cubierta protección eje
03	02	Rodamiento 5	05	31	Tapa protección de eje
03	03	Rodamiento 6	05	32	Junta
03	03	Circlip 1	05	33	Tornillo
03	05	Circlip 1	05	40	Kit fijación para eje hueco
03	06	Tapa rodamiento	05	41	Disc
03	07	Arandela /distanciador	05	42	Circlip
03	08	Aro de ajuste	05	43	Tornillo
03	09	Chaveta interna para engrane	11	00	Motor
03	13	Circlip	11	10	Slinger
03	20	Par cónico	11	111	Chaveta para piñon de eje motor
03	21	Eje de corona	1''	''	Onavota para pinon de eje motor
03	21	Circlip para piñon			
03	22	Chaveta			
03	50	Engranaje 1er tren			
33	30	Lingianaje lei tieli			

6.1. Diseño básico de la unidad de engranajes helicoidal C






6.2. Diseño básico de unidad de ejes paralelos F



7. Instalación mecánica

7.1. Trabajos previos en el reductor

7.1.1.Comprobación del reductor

Únicamente se permite poner en funcionamiento el reductor si se cumplen las siguientes condiciones:

- No se aprecia ningún daño, p. ej., debido al almacenamiento o al transporte.
- En particular, los retenes, los capuchones y las cubiertas protectoras no deben presentar daño alguno.
- No se aprecia ningún fallo de estanqueidad ni pérdidas de aceite.
- No presenta corrosión ni ningún otro indicio de almacenamiento incorrecto o en condiciones de humedad.
- El material de embalaie se ha retirado por completo.
- ¡Los tornillos de evacuación de aceite y las válvulas de ventilación deben estar accesibles sin ningún impedimento!

Por principio, los ejes de salida y las superficies de las bridas se deben limpiar a fondo de cualquier resto de producto anticorrosivo o suciedad; para ello se puede usar disolvente convencional.

iCUIDADO!

¡Se debe impedir que las zonas de obturación de los retenes entren en contacto con el disolvente! ¡Pueden sufrir daños materiales irreversibles!

iATEX!

El reductor solo puede ponerse en funcionamiento si:

- las condiciones ambientales en el lugar están de acuerdo con los requisitos en la placa de identificación del reductor (grupo de equipos, categoría, zona, clase de temperatura, temperatura ambiente máxima).
- la atmósfera ambiental no es explosiva al montar el equipo motriz.
- los elementos de accionamiento adjuntos, como acoplamientos, poleas, etc., así como los motores montados cumplen con ATEX.
- Se han considerado las fuerzas radiales y axiales permisibles para el reductor.
- no se aprecian daños en el reductor.
- no hay fugas ni pérdida de aceite visibles.

7.1.2. Posición de montaje

Solo se autoriza el funcionamiento del reductor en la posición de montaje especificada, que se debe consultar en la placa de características. La posición de montaje no se debe cambiar durante el funcionamiento.

iATEX!

Un cambio de la posición de montaje solo se puede realizar después de consultar con el fabricante. Cambiar la posición de montaje, sin previa consulta, invalidará la Declaración de conformidad y lo excluirá de cualquier reclamo de garantía.

7.1.3.Brazo de reacción mediante amortiguadores de goma

Los resortes Urelast se deben montar con un pretensado de 2 mm (F02, F03) ó 3 mm (a partir de F04).

7.1.4.Pintado del reductor

Si se da al accionamiento una nueva capa de pintura, o bien si se repinta parcialmente, la válvula de ventilación y los retenes se deben proteger cuidadosamente con cinta adhesiva. Retirar la cinta adhesiva una vez finalizados los trabajos de pintura.

iATEX!

Los reductores y motorreductores (Zona 2 + 22) con especificaciones de pintura de LC3 y superiores están equipados con notificación y signos relacionados con la carga electrostática:

7.1.5. Temperatura superficial de la carcasa

Para evitar un calentamiento inadmisible del reductor, se debe tener en cuenta lo siguiente:

- El reductor debe disponer de suficiente espacio libre alrededor suyo.
- El aire de refrigeración de los motorreductores debe poder circular sin obstáculos en torno al reductor.
- Se debe impedir que el reductor quede encerrado por completo.
- Se debe evitar que el reductor quede expuesto a corrientes de aire caliente procedentes de otros grupos.

Se debe impedir la entrada de calor en el reductor (vigilar posible trasmisión por ejes).

7.2. Trabajos previos en el motor

7.2.1. Caja de bornas

En el interior de la caja de bornas no debe haber cuerpos extraños, suciedad ni humedad. Todas las entradas se deben cerrar de manera impermeable al agua y al polvo usando una junta tórica o una junta plana apropiada; la caja de bornas, con su junta original.

¡No dañar las cajas de bornas, tableros de bornas, conexiones de cables, etc., del interior de la caja de bornas!

iPELIGRO!

¡La caja de bornas debe estar cerrada de manera impermeable al agua y al polvo!

7.2.2.Comprobación de la resistencia de aislamiento

¡Antes de la puesta en marcha y después de un tiempo prolongado de almacenamiento o fuera de servicio, es preciso comprobar la resistencia de aislamiento!

Antes de empezar a medir la resistencia de aislamiento, tenga en cuenta las indicaciones recogidas en el manual de manejo del ohmímetro utilizado. Para llevar a cabo la medición de aislamiento, los cables del circuito principal que ya estén conectados se deben volver a desconectar de las bornas.

iPELIGRO!

Durante la medición, y justo después de esta, las bornas presentan niveles peligrosos de tensión, por lo que se debe evitar tocarlas. Si los cables de alimentación están conectados, asegúrese de que no se puede aplicar tensión.

Mida la resistencia mínima de aislamiento del devanado respecto a la carcasa de la máquina a poder ser a una temperatura del devanado de entre +20 °C y +30 °C. A otras temperaturas, el valor de la resistencia de aislamiento varía. Al efectuar la medición, se debe esperar hasta que la resistencia alcance su valor final (aprox. 1 minuto).

0.5 MO/kV

(î)

¡CUIDADO!

Si la resistencia de aislamiento es igual o inferior al valor crítico, se deben secar los devanados o bien desmontar el rotor y limpiar a fondo y secar los devanados. Después de limpiar y secar los devanados, tenga en cuenta que la resistencia de aislamiento de estos es menor cuando están calientes. La resistencia de aislamiento solo se puede valorar correctamente calculando su valor a la temperatura de referencia de +25 °C. Si el valor medido está próximo al nivel crítico, los intervalos de control de la resistencia de aislamiento se deben acortar durante un periodo determinado.

La siguiente Tabla 1 indica la tensión de medición, la resistencia de aislamiento mínima y el valor crítico de la resistencia de aislamiento. Los valores son válidos para una temperatura del devanado de +25 °C.

Tensión de referencia U _N < 2 kV
500 V
10 ΜΩ

También se deben tener en cuenta los puntos siguientes:

Si la medición se efectúa con el devanado a una temperatura distinta de +25 °C, a partir del resultado de la medición y por medio de un cálculo se debe obtener el valor correspondiente a la temperatura de referencia de +25 °C. La resistencia de aislamiento se reduce a la mitad por cada 10 K de aumento de la temperatura y se duplica por cada 10 K de descenso de la temperatura.

Valor crítico de la resistencia de aislamiento específica tras un periodo prolongado de funcionamiento

- Los devanados secos y cuyo estado sea como nuevo presentan valores de la resistencia de aislamiento de entre 100 y 2000 MΩ, o incluso superiores en ciertas ocasiones. Si el valor de la resistencia de aislamiento se encuentra cerca del valor mínimo o por debajo de este, esta circunstancia se puede deber a la presencia de humedad y/o suciedad. En ese caso es preciso secar los devanados.
- Durante el tiempo de funcionamiento, la resistencia de aislamiento de los devanados puede disminuir hasta el valor crítico como consecuencia de las condiciones ambientales y de funcionamiento. El valor crítico de la resistencia de aislamiento a una temperatura del devanado de +25 °C para una tensión de referencia se calcula multiplicando el valor de la tensión de referencia (en kV) por el valor de la resistencia específica crítica (0,5 MΩ/kV);
 - p. ej., resistencia crítica para una tensión de referencia (UN) de 690 V: $1000 \text{ V} \times 0.5 \text{ M}\Omega/\text{kV} = 0.345 \text{ M}\Omega$

7.2.3.Conexión del conductor de tierra

La puesta a tierra se debe llevar a cabo a través de la conexión al punto correspondiente del interior de la caja de bornas, previsto para tal fin y debidamente identificado.

La sección transversal del cable de puesta a tierra de la máquina debe cumplir las reglas de instalación, p. ej., la norma DIN EN IEC 60204-1.

Al efectuar la conexión se debe tener en cuenta lo siguiente:

Proteger la superficie del contacto desnudo contra la corrosión usando un producto apropiado, p. ej., vaselina sin ácido.

Tabla 2: Área minima de la sección transversal

Área mínima de la sección transversal "S" del conductor de fase (L1, L2, L3)	Área mínima de la sección transversal de la conexión a tierra correspondiente
mm²	mm²
S ≤ 16	S
16 < S ≤ 35	16
S > 35	0.5 x S

iATEX!

Los motorreductores para (Zona 2 + 22) se entregan con un manual de motor separado incluido en el paquete. El cumplimiento de este manual es imprescindible para la operación en áreas explosivas.

7.3. Instalación del reductor/motorreductor

- La instalación se debe llevar a cabo de tal modo que el accionamiento no quede expuesto a vibraciones ni sacudidas, ya que estas podrían dar lugar a la generación de ruidos.
- La superficie de fijación debe ser plana y rígida a la torsión.
- Es imprescindible evitar que la carcasa sufra deformaciones.
- El par de reacción se debe absorber por medio de un brazo de reacción o un juego de amortiguadores de goma (sin racores rígidos).
- Los elementos de accionamiento y de salida deben estar provistos de una protección contra el contacto.
- La instalación se debe llevar a cabo de tal modo que nada impida la entrada de aire del exterior ni la evacuación del aire caliente. Se prohíbe retirar las paletas del ventilador y la directriz del ventilador, así como encerrar el motor en una carcasa, ya que la afluencia de aire de refrigeración se ve notablemente mermada en ambos casos. En consecuencia, el motor se sobrecalentaría.

7.3.1. Ventilación del reductor

Reductor con válvula de ventilación:

¡Los tornillos de evacuación de aceite y las válvulas de ventilación deben estar accesibles sin ningún impedimento!

La válvula de ventilación con seguro de transporte está situada en el lugar apropiado en función de la posición de montaje.

Los siguientes tamaños de reductores están equipados con una válvula de ventilación:

- C07, C08, C09, C10, C13, C14, C16
- F06, F07, F08, F09, F10, F12, F15
- K06, K07, K08, K09, K10, K12, K15

iCUIDADO!

Activación de la válvula de ventilación:

La válvula de ventilación se debe activar antes de la puesta en marcha; para ello es preciso retirar por completo el seguro de transporte (brida de goma) tal como se describe a continuación.

Figura 1: Letrero de advertencia (de color rojo) situado en el reductor

¡Romper totalmente la brida de goma antes de la puesta en marcha!

Sin quitar o retirar la protección de transporte o con una válvula sucia, el reductor puede sobrecalentarse. Verifique la funcionalidad y limpieza completa de la válvula de ventilación regularmente.

Los siguientes tamaños de reductores no están equipados con un válvula de ventilación:

- C00, C01, C03, C05, C06
- F02, F03, F04, F05
- K02, K03, K04, K05

7.3.2.Reductor /motorreductor con antirretorno

El antirretorno permite el funcionamiento con un solo sentido de giro. El sentido en el que se dispone de libertad de giro está señalizado con una flecha en la salida del reductor o en la caperuza del ventilador del motor.

¡CUIDADO!

Si el motor arranca a pleno consumo de potencia en sentido contrario al sentido de bloqueo del reductor, esta circunstancia puede provocar daños en el antirretorno o incluso su inutilización total.

Antes de la puesta en marcha se debe comprobar el sentido que cuenta con libertad de giro.

Motorreductor con antirretorno en el motor:

En el caso de los reductores con antirretorno, el sentido de giro del motor eléctrico y de la red se debe comprobar con un equipo de medición. ¡Tener en cuenta la flecha situada en la carcasa que señala el sentido de giro! El sentido de giro de los motores con devanado de 400/690 V se puede determinar mediante un breve arranque con conexión en estrella.

7.3.3.Reductor con eie macizo

Los ejes de salida de hasta 50 mm de diámetro se fabrican conforme al campo de tolerancias ISO k6, y a partir de 55 mm conforme al ISO m6.

Todos los ejes de salida cuentan con roscas de centrado según DIN 332 que se deben utilizar para el montaje de elementos de transmisión

En el estado de suministro, todos los ejes de salida tienen aplicado un producto antioxidante que se debe retirar con disolvente convencional.

(î)

iCUIDADO!

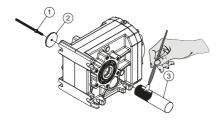
- ¡Se debe impedir que el disolvente entre en contacto con las zonas de obturación de los retenes!
- Es imprescindible evitar que el extremo del eje sufra golpes y sacudidas, ya que podrían dañar el rodamiento de la salida.
- ¡Los elementos de accionamiento mecánico que ejerzan cargas radiales sobre el eje de salida se deben montar lo más cerca posible de los rodamientos de salida!
- Los elementos de transmisión montados deben estar equilibrados y no deben ocasionar cargas radiales ni axiales no permitidas (véanse en el catálogo los valores admisibles).

7.3.4. Montaje y desmontaje de reductores con eje hueco

iCUIDADO!

En referencia al diseño del eje del cliente, tenga en cuenta las indicaciones de diseño recogidas en la versión actual del catálogo de motorreductores.

Montaje: (véanse Figura 2 y Figura 3 en la página ES-22)


Básicamente, el montaje de los reductores de eje hueco se debe llevar a cabo de tal modo que los rodamientos del eje de salida no queden expuestos a cargas axiales.

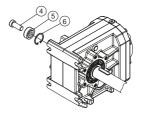

- 1. Compruebe que el eje de la máquina (3) no presente daños, p. ej., zonas marcadas o dañadas.
- 2. Antes del montaje, limpie cuidadosamente el eje de la máquina (3).
- 3. Antes de montar el reductor de eje hueco en el eje de la máquina, aplique sobre la superficie de este una pasta lubricante (3), p. ej., pasta Klüber 46MR401.
- Coloque el reductor en el eje de la máquina (4, 5). Si el eje del cliente no dispone de resaltes, es preciso usar un distanciador.
- Introduzca en el eje hueco el juego de fijación opcional y fije axialmente el eje del cliente por medio del tornillo de retención (4). Para consultar el par de apriete del tornillo véase la Tabla 9 en la página ES-44.
- 6. El tornillo de retención debe prepararse adicionalmente con un adhesivo de rosca (de resistencia media).

Figura 2: Colocación del eje del cliente

Figura 3: Fijación del eje del cliente con el juego de fijación

- (1) Varilla roscada + tuerca hexagonal
- (2) Disco de presión
- (3) Eje de la máquina de la parte del cliente
- (4) Tornillo de retención DIN6912
- (5) Arandela de resorte
- (6) Circlip DIN472

Las piezas (4), (5) y (6) están incluidas en el juego de kit fijación opcional GMBSBSD.

Desmontaje:

- 1. Afloje el tornillo de retención (4). Retire por completo el juego de fijación y, si lo hay, el distanciador.
- 2. Meta el disco de presión (11), la tuerca de extracción (10) y el circlip (6) en el eje hueco.
- 3. Enrosque el tornillo de retención (9). Al apretar el tornillo, el reductor es extraído del eje de la máquina (3).

Figura 4: Desmontaje del eje del cliente con o sin resaltes

- (3) Eje del cliente con rosca de centrado según DIN332/1
- (6) Circlip DIN 472
- (8) Eje hueco
- (9) Tornillo de retención (según cliente, longitud del tornillo en función de la longitud del eje de la máguina)
- (10) Tuerca de extracción
- (11) Disco de presión

7.3.5. Montaje y desmontaje de discos de apriete

Los discos de apriete se suministran preparados para el montaje. No se permite desarmarlos antes de llevar a cabo el primer montaje. Apretar los tornillos de apriete sin haber montado el eje del cliente puede provocar la deformación del eje hueco.

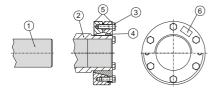
Montaje (véanse la Figura 5 en la página ES-23):

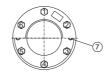
- 1. Retire la tapa, si la hay.
- 2. Afloje los tornillos de apriete (3) varios pasos de rosca. ¡No desenroscarlos por completo!
- Retire cuidadosamente la grasa de todo el orificio del eje hueco (2, área gris). ¡Este debe quedar TOTALMENTE libre de grasa!

- 4. Retire cuidadosamente la grasa del eje de la máquina (1, área gris) en la zona de sujeción del disco de apriete. ¡Este debe quedar TOTALMENTE libre de grasa!
- 5. Introduzca el disco de apriete en el eje hueco (2) hasta que el anillo exterior del disco de apriete quede a ras del eje hueco (2). En la zona de asiento del anillo de contracción, la superficie exterior del eje hueco (2) se puede engrasar.
- 6. Introduzca el eje de la máquina (1) desengrasado en el eje hueco (2) de manera que la zona de conexión por contracción se aproveche por completo.
- 7. Reapriete por orden a lo largo de varias vueltas en el sentido de las agujas del reloj los tornillos de apriete (3) para que ambos anillos exteriores (5) queden sujetos en paralelo entre sí. El número de tornillos de apriete depende del tamaño constructivo del anillo de contracción.

¡CUIDADO!

No apretar los tornillos de apriete (3) "EN CRUZ".


8. Utilice una llave dinamométrica para apretar los tornillos de apriete (3) hasta el valor del par de apriete (6) indicado en el disco de apriete. Una vez apretados los tornillos de apriete (3), entre los anillos exteriores (5) debe quedar una separación uniforme. Si no es así, el disco de apriete se debe volver a montar de nuevo.


(î)

¡CUIDADO!

Después de llevar a cabo el montaje correctamente, la parte frontal del eje hueco y del eje de la máquina se debe marcar con una raya (a lápiz) a fin de poder detectar un posible deslizamiento durante la puesta en marcha (con carga).

Figura 5: Eje hueco con disco de apriete

- (1) Eje de la máquina de la parte del cliente
- (2) Eje hueco

(3)

- Tornillo de apriete
- (4) Anillo interior
- (5) Anillo exterior
- (6) Par de apriete de los tornillos de apriete
- (7) Rosca de extracción

Desmontaje:

- Afloje los tornillos de apriete (3) de manera uniforme y por orden. Al principio, cada tornillo de apriete se debe aflojar solo alrededor de un cuarto de giro en cada vuelta. Los tornillos de apriete nunca se deben desenroscar por completo.
- Por medio de la rosca de extracción (7), extraiga el anillo interior (4). Previamente se debe retirar cualquier capa de herrumbre que se haya podido formar en el eje de la máquina, delante del eje hueco.
- 3. Extraiga el disco de apriete del eje hueco (2).
- 4. ¡El paso 2 solo se puede llevar a cabo con la versión del disco de apriete de dos piezas!

Tabla 3: Par de apriete de los tornillos de bloqueo del aro de compresión (shrink disc)

Tamaño del reductor	Rosca	Par de apriete
F02 / K02	M5	5 Nm
F03 / K03		
F04 / K04		
F05 / K05	M6	12 Nm
F06 / K06		
F07 / K07		
F08 / K08	M8	30 Nm
F09 / K09	IVIO	30 INIII
F10 / K10	M10	59 Nm
F12 / K12	M12	100 Nm
F15 / K15	M14	160 Nm

7.3.6. Montaje de la tapa

Antes del montaje se debe revisar que las tapa no presenten daños debidos al transporte. No se permite montar tapa dañadas, ya que podrían patinar. Se deben utilizar todos los tornillos de retención, que además se deben inmovilizar

impregnándolos con adhesivo fijador (de resistencia media). Para consultar el par de apriete de los tornillos véase Tabla 9 en la página ES-44.

Figura 6: Reductor con tapa de eje hueco

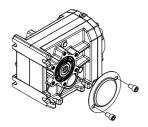
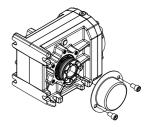



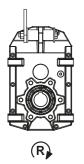
Figura 7: Reductor con tapa de disco de apriete

€x ¡ATEX!

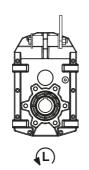
Los reductores con eje hueco, que se utilizan en áreas explosivas, deben estar equipados con una tapa de protección.

7.3.7. Montaje de brazos de reacción

(i)


¡CUIDADO!

¡Se debe tener en cuenta el sentido de giro del eje hueco!


¡Los resortes Urelast del juego de topes de goma se deben someter a presión en el sentido de giro de trabajo principal!

El pretensado recomendado de los resortes Urelast: 2 mm (F02, F03) o 3 mm (F04, F05, F06, F07, F08, F09, F10, F12, F15)

Figura 8: Reductor ejes paralelos

En el sentido de las agujas del reloi

En sentido contrario a las agujas del reloj

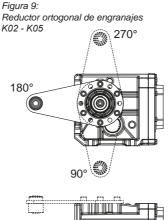
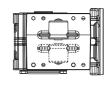
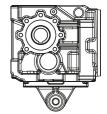
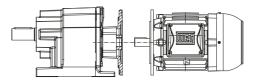




Figura 10: Reductor ortogonal de engranajes K06 - K15

Posibles posiciones del brazo de reacción: K02: 90°, 135°, 180°, 225°, 270°

K03 - K05: 90°, 120°, 150°, 180°, 210°, 240°, 270°

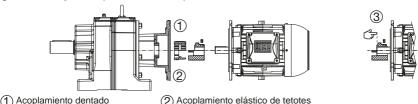


7.3.8. Montaje de motores estándar IEC / NEMA con adaptadores IEC / NEMA

Procedimiento de montaje para motores estándar IEC (B5) y adaptadores de conexión IEC 63 a 100: Procedimiento de montaje para motores estándar NEMA (forma C) y adaptadores de conexión NEMA N56 a N182:

- Limpie el eje del motor y las superficies de brida del motor y el adaptador y verifique si hay daños.
- Antes de instalar, aplique pasta lubricante, p.ej. Klüber paste 46 MR 401, al eje del motor.
- Impregne los tornillos de fijación con adhesivo de bloqueo de rosca (resistencia media).
- La superficie de contacto entre el motor y el adaptador debe sellarse con un sellador adecuado (por ejemplo, Loctite 510 o silicona).
- Luego coloque el motor en el adaptador y apriete los tornillos (no incluidos) al par especificado.
- Utilice tornillos con una clase de propiedad mínima 8.8. Par de apriete, ver Tabla 9 en la página ES-44.

Figura 11: Montaje de un motor IEC en el adaptador del reductor


Procedimiento de montaje para motores estándar IEC (B5) y adaptadores IEC 112 e 132 con acoplamiento dentado o adaptadores IEC 160 a 280 con acoplamiento elástico de tetones:

Procedimiento de montaje para motores estándar NEMA (forma C) y adaptadores NEMA N184 y N213 / 215 con acoplamiento dentado o adaptadores NEMA N254 / 256, N284 / 286, N324 / 326 y N364 con acoplamiento elástico de tetones:

Se debe observar la posición de montaje correcta al colocar el medio acoplamiento suministrado en el eje del motor. El medio acoplamiento debe empujarse sobre el eje del motor hasta alinearlo con el extremo del eje y fijarse allí.

- Limpie el eje del motor y las superficies de brida del motor y el adaptador.
- Caliente el medio acoplamiento a aprox. 80°C (176°F).
- Coloque el medio acoplamiento en el eje del motor (alineado al extremo del eje a ras con el final del moyú del acoplamiento (3)).
- Ariete y fije el semi acoplamiento utilizando el tornillo pasador situado sobre el chavetero, usando un fijador adhesivo de bloqueo de rosca (resistencia media).
- Compruebe que el medio acoplamiento esté asentado correctamente.
- La superficie de contacto entre el motor y el adaptador debe sellarse con un sellador adecuado (por ejemplo, Loctite 510 o silicona).
- Coloque el motor en el adaptador. El engranaje del medio acoplamiento debe encajar en el engranaje del casquillo del acoplamiento.
- Sujete el motor al adaptador con los tornillos de fijación adecuados (no incluidos). Par de apriete, ver Tabla 9 en la página ES-44. Clase mínima de propiedad 8.8.

Figura 12: Montaje en adaptador IEC con acoplamiento

- Solo se pueden montar motores IEC con aprobación para la zona ATEX y de acuerdo con la placa de identificación.
- La superficie de contacto entre el motor y el adaptador debe sellarse con un sellador apropiado (sello de superficie anaeróbica, como Loctite 510 o Terostat 9140).

7.3.9. Montaje de Servomotor

Los adaptadores para Servomotores de la línea WG20 se entregan con acoplamientos elásticos. Aseguran un funcionamiento silencioso sin deslizamiento y un bajo mantenimiento.

La concentricidad de los extremos del eje y la cara de montaje de las bridas deben cumplir con DIN 42955.

Procedimiento de montaje:

- Limpie el eje del motor con un producto desengrasante.
- Retire el cubo de acoplamiento de la carcasa del adaptador, lado motor. (La estrella de acoplamiento permanece en la segunda mitad del acoplamiento, que está integrada en el adaptador, lado reductor).
- Compruebe el diámetro de inserción del eje del motor y el cubo de acoplamiento.
- Deslice el cubo sobre el eje del motor (Atención: para garantizar un funcionamiento seguro, fíjese en el parámetro "X" en la Tabla 4 en la página ES-26.

El montaje incorrecto del cubo puede conducir a una elevada temperatura y un funcionamiento anómalo, provocando cargas no presvistas!

- Apriete el cubo con el tornillo previsto e incluido. Fíjese al par de apriete en la Tabla 4.
- Verifique la posición correcta de la estrella de acoplamiento dentro del adaptador.
- Deslice cuidadosamente el motor sobre el adaptador.
 - ¡Las dos mitades de acoplamiento deben conectarse sin problemas!
- Atornille el motor en la carcasa del adaptador. Los tornillos de fijación no están incluidos.

Tabla 4: Correlación de tornillos / pares según tamaños de adaptador

Tamaño adaptador	Diámetro eje motor [mm]	X [mm]	Tipe de acoplamiento	Tornillo de fijación (ISO 4762)	Par de apriete [Nm]*
	14	47.5	EK7/20	M5	8
S92	16	47.5	EK7/20	M5	8
	19	47.5	EK7/20	M5	8
S105	19	69.5	EK7/60	M6	15
044.4	19	69.5	EK7/60	M6	15
S114	24	69.5	EK7/60	M6	15
S115	24	69.5	EK7/60	M6	15
	19	78.5	EK7/60	M6	15
C120	22	78.5	EK7/60	M6	15
S130	24	78.5	EK7/60	M6	15
	28	78.5	EK7/60	M6	15
S141	24	69.5	EK7/60	M6	15
S142	20	77.2	EK2/150	M8	25
5142	32	91.2	ENZ/150	IVIO	35
S180	35	86.5	EKL/300	M10	70
C400	32	91.2	EKL/150	M10	70
S189	38	80.5	EKL/300	M10	70
S190	38	107.5	EKL/300	M10	70

^{*} El par de apriete es válido para motores con o sin chaveta

Figura 13: Montaje esquematico de SERVOMOTOR con chaveta

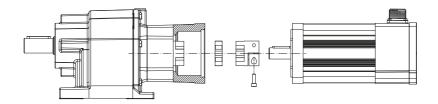
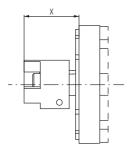



Figura 14: Dimensión de montaje del eje "X" para motores SERVO

8. Lista de comprobación: reductor

Antes de la puesta en marcha del reductor se debe comprobar lo siguiente:	Más información, véase el capítulo	Comprobado
Revisión de la entrega nada más recibirla para detectar posibles daños de transporte. Si los hay, la puesta en marcha no se debe llevar a cabo.		
¿La posición de montaje indicada en la placa de características coincide con la posición de montaje real?	3.1., 15.	
¿La válvula de ventilación está montada en el punto correcto (correspondiente a la posición de montaje) y se puede acceder a ella sin obstáculos?	15.	
¿La válvula de ventilación está activada (brida de goma retirada)?	7.3.1.	
Si se trata de una versión con disco de apriete, ¿se ha comprobado la conexión?	7.3.5.	
En caso de utilización de un antirretorno, ¿se ha comprobado el sentido que cuenta con libertad de giro?	7.3.2.	
¿Se ha colocado en las piezas rotativas una protección contra el contacto?		

Antes de la puesta en marcha del reductor se debe comprobar lo siguiente:	Más información, véase el capítulo	Comprobado
¿Los datos en la placa de identificación del reductor coinciden con las condiciones ambientales en el sitio de operación?	3.1	
¿Se ha asegurado de que no haya atmósfera explosiva, aceite, ácido, vapor o radiación presentes al montar el reductor?	7.1	
¿Se ha garantizado que los reductores estén adecuadamente ventilados y que no se transfiera calor del exterior al interior (a través de un acoplamiento, etc.)? La temperatura del aire de ventilación no debe ser superior a 40°C.	7.1	
¿Todos los elementos de entrada y salida tienen aprobación ATEX?	7.1	
¿El motor tiene una aprobación y certificación ATEX adecuada?	7.3.8.	
Operando directa de red: ¿Los datos en la placa de identificación coinciden con las condiciones en el sitio de operación?		
Operando a través de inverter: ¿Está aprobado el motorreductor para el funcionamiento del convertidor de frecuencia? ¿Los ajustes del inversor se corresponden con los parámetros en la placa de identificación?		

9. Lista de comprobación: motor

Antes de la puesta en marcha del motor se debe comprobar lo siguiente:	Más información, véase el capítulo	Comprobado
¿La tensión de red y la frecuencia concuerdan con los datos recogidos en la placa descriptiva del motor?		
¿Todas las conexiones (conexión del motor, conductor de tierra, etc.) se han establecido correctamente?	7.2.3.	
¿Coincide el sentido de giro del motor/motorreductor?	10.2.	
En caso de utilización de un antirretorno, ¿se ha comprobado el sentido que cuenta con libertad de giro?	7.3.2.	
¿La caja de bornas está cerrada de manera impermeable al agua y al polvo?	7.2.1.	
¿El guardamotor está instalado?	10.1.	
¿Todos los dispositivos de protección del motor están activos y ajustados a la corriente de referencia del motor?		
¿Se ha comprobado la resistencia de aislamiento?	7.2.2.	
¿La resistencia de caldeo opcional está desconectada?	18.1.	
¿La ventilación forzada opcional está conectada a un sistema externo de alimentación?	18.3.	

10. Puesta en marcha

10.1. Conexión eléctrica del motor

La tensión y la frecuencia de red deben coincidir con los datos recogidos en la placa de características. Son admisibles desviaciones de tensión de hasta un ±5 % y/o desviaciones de frecuencia de hasta un ±2 %.

La conexión del motor se basa en el esquema de conexiones adjunto al motor, situado en la caja de bornas.

El diagrama de cableado para las series de motores 11 y 22 está disponible en este manual en la Figura 16 en la página ES-39. La seguridad de la conexión eléctrica se debe conservar de manera permanente (sin extremos de hilos sobresalientes); utilizar los componentes asignados para los extremos de los cables.

iCUIDADO!

Se debe instalar un guardamotor, o bien una protección con relé de sobre corriente para proteger los devanados del motor. Los fusibles cortacircuitos no protegen el motor contra posibles sobrecargas, sino que únicamente evitan que los cables de alimentación y las instalaciones de distribución sufran daños en caso de cortocircuito. Asegurarse siempre de desconectar la resistencia de caldeo opcional antes de conectar el sistema.

10.2. Sentido de giro

De manera predeterminada, los motores son apropiados para girar tanto en el sentido de las agujas del reloj como en el sentido contrario. Si los cables de alimentación se conectan con el orden de fases L1, L2, L3 a U1, V1, W1, el sentido de giro resultante es el de las agujas del reloj (mirando hacia el extremo del eje de la parte de accionamiento).

Si se intercambian dos conexiones, el sentido de giro resultante es el contrario a las agujas del reloj (p. ej., L1, L2, L3 a V1, U1, W1).

10.3. Nivel de aceite del reductor suministrado

iCUIDADO!

El nivel de aceite se ajusta de fábrica en función de la posición de montaje. Para consultar el volumen exacto de llenado de aceite, véase la placa de características del reductor.

Los accionamientos cuyo pedido no incluye el llenado de aceite se suministran con el interior protegido por un producto anticorrosivo. Esta protección del interior del reductor se efectúa con un aceite anticorrosivo. El aceite anticorrosivo es miscible con todos los tipos de aceite que se indican en la placa de características, por lo que no es preciso enjuagar el interior del reductor antes de su llenado.

iCUIDADO!

La posición de montaje solo se puede modificar previa consulta al fabricante.

Si resulta necesario abrir el reductor, p. ej., para llevar a cabo una reparación, antes de su nueva puesta en marcha se debe volver a llenar con el tipo adecuado y la cantidad correcta de lubricante, conforme a lo indicado en la placa de características. Para consultar los lubricantes véase la página ES-33.

11. Funcionamiento

Durante el funcionamiento del reductor a carga máxima se debe estar atento a la posible aparición de:

- Ruidos extraños,
- Vibraciones y oscilaciones anómalas,
- Formación de humo,
- Falta de estanqueidad.
- Si se trata de una versión con disco de apriete: Tras retirar la tapa de protección, comprobar si se ha producido un movimiento relativo entre el eje hueco y el eje de la máquina. A continuación, montar de nuevo la tapa.
- Temperatura superficial máxima de la carcasa 90 °C.

Temperatura superficial de la carcasa:

La temperatura superficial se debe medir durante el funcionamiento en estado de carga máxima. La temperatura superficial máxima se alcanza al cabo de unas 3 horas y no debe superar el valor de 90 °C.

La medición de la temperatura superficial se debe llevar a cabo con equipos convencionales de medición de temperatura.

Si la inspección del reductor revela alguna anomalía relativa a los puntos enumerados anteriormente, se debe detener el accionamiento. Es preciso ponerse en contacto con el fabricante.

12. Fallos de funcionamiento

Si necesita solicitar ayuda, tenga preparados los datos siguientes:

- Datos de la placa de características y número de serie
- Tipo de avería
- Hora y circunstancias en las que se ha producido la avería
- Causa posible

iCUIDADO!

La realización incorrecta de trabajos en el reductor o en el motor puede ser causa de daños. ¡Si el reductor /motorreductor presenta alguna avería, detener de inmediato el accionamiento!

Posibles averías del reductor:

Avería	Causa posible	Solución	
Ruidos de funcionamiento extraños, pero uniformes	Daños en los rodamientos o en los dientes	Ponerse en contacto con el fabricante	
Ruidos de funcionamiento extraños y no uniformes	Presencia de cuerpos extraños en el aceite	Cambiar el aceite	
Movimientos del reductor al efectuar	La fijación del reductor ha acumulado holguras	Apretar los tornillos y tuercas de retención con el par prescrito. Sustituir los tornillos y tuercas de retención que estén dañados	
la corresion	El juego de topes de goma del brazo de par no está pretensado o está dañado	Pretensar correctamente el juego de topes de goma o sustituirlo si está dañado	
El reductor se calienta demasiado	Demasiado aceite	Corregir el volumen de llenado de aceite	
(temperatura superficial del reductor > 90 °C)	Daños en el reductor (dentado, rodamientos)	Ponerse en contacto con el fabricante	
	Válvula de ventilación defectuosa	Sustituir la válvula de ventilación	
Pérdida de aceite en el reductor o el	Junta defectuosa	Comprobar las juntas y sustituirlas si es necesario	
motor	El reductor no se ventila	Retirar el seguro de transporte de la válvula de ventilación	
	Demasiado aceite	Corregir el volumen de llenado de aceite	
Pérdida de aceite en la válvula de ventilación	Funcionamiento del reductor en una posición de montaje errónea	Montar la válvula de ventilación en la posición correcta. Adaptar el volumen de llenado de aceite según la posición de montaje	
	Válvula de ventilación defectuosa	Sustituir la válvula de ventilación	
El eje de salida del reductor no gira pese a que el motor está en	Rotura en el reductor o conexión eje/ cubo interrumpida	Ponerse en contacto con el fabricante	
funcionamiento y hace girar el árbol de accionamiento	La conexión del disco de contracción patina	Comprobar la conexión del disco de contracción	

13. Inspección y mantenimiento

Los reductores de las series C (tamaños 00 - 06), F (tamaños 02 - 05) y K (tamaños 02 - 05) están exentos de mantenimiento y no requieren cambios de lubricante. Estos accionamientos carecen de válvula de ventilación y no tienen tornillos de evacuación de aceite, de nivel de aceite ni de llenado de aceite.

Para aplicaciones especiales en condiciones ambientales difíciles / agresivas, recomendamos el cambio de aceite después de 10000 horas de servicio, sin embargo:

Los reductores de la serie C (a partir de tamaño 07), F (a partir de tamaño 06) y K (a partir de tamaño 06) necesitan un cambio de aceite de acuerdo con los períodos de mantenimiento. Estos reductores incorporan tapones de drenaje de aceite y de llenado de aceite para las posiciones de montaje principales.

¡Para aplicaciones especiales en condiciones ambientales difíciles / agresivas, póngase en contacto con el servicio técnico!

iATEX!

- No puede haber atmósfera explosiva en ningún trabajo de mantenimiento o reparación. Los trabajos de mantenimiento y reparación solo deben ser realizados por personal cualificado y autorizado.
- El variador debe estar apagado durante todo el trabajo de mantenimiento.
- Se debe verificar si el reductor tiene fugas, especialmente los sellos del eje y las tapas de cierre.
- Limpieza de la unidad: el polvo en la carcasa del reductor debe eliminarse periódicamente.
- Verificación de la estrella de acoplamiento del adaptador: las partes de goma de los adaptadores deben verificarse. Si el desgaste es excesivo, deben reemplazarse (comuníquese con el fabricante).

13.1. Intervalos de inspección y mantenimiento

Intervalo temporal	Trabajo de inspección y mantenimiento
mensual	 Comprobar si el ruido del reductor ha variado (ruido de funcionamiento del dentado y de los rodamientos) Comprobar la temperatura de la carcasa (máx. 90°C, 194°F) Comprobación visual de posibles fugas en las juntas (pérdida de aceite) Comprobación visual de la cantidad de aceite a través de la mirilla
cada 3 meses	Limpiar el exterior de la válvula de ventilación
semestralmente	 Comprobar los topes de goma Comprobar que los tornillos de retención estén bien apretados
cada 5000 horas de funcionamiento, a más tardar cada 4 años	Comprobación visual de posibles fugas en los retenes; en caso necesario, sustituir los retenes
cada 10000 horas de servicio o a más tardar cada 5 años	Cambio de aceite: Unidades coaxiales: C07, C08, C09, C10, C13, C14, C16 Unidades ejes paralelos: F06, F07, F08, F09, F10, F12, F15 Unidades ortogonales: K06, K07, K08, K09, K10, K12, K15
cada 10 años	Revisión general
periódicamente, según necesidad (en función de los factores externos)	Comprobar la distancia del freno Limpiar la directriz que cubre el ventilador del motor

¡ATEX!

Revisión General:

La revisión general debe ser realizada por el servicio oficial del fabricante, donde se toman las siguientes medidas:

- Limpieza exterior de la caia v elementos.
- Desmontaie v control de daños de todas las piezas.
- Reemplazo de piezas dañadas y desgastadas, como sellos del eje, tapas de cierre y juntas sólidas.
- Sustitución de la estrella de acoplamiento y el tapón de ventilación.
- Reemplazo del lubricante y la pintura (si es necesario)
- Control final

13.2. Trabajos de inspección y mantenimiento del reductor

iPELIGRO!

Prohibido realizar trabajos de mantenimiento y conservación en presencia de atmósferas explosivas. Los trabajos de mantenimiento y conservación deben ser efectuados exclusivamente por personal técnico cualificado.

Solo se permite la realización de los trabajos de mantenimiento y conservación con el accionamiento detenido, sin tensión y protegido de manera que no se pueda volver a conectar por error.

iPELIGRO!

Antes de comenzar los trabajos, dejar que el reductor se enfríe. ¡Peligro de quemaduras!

Comprobación visual de posibles fugas en las juntas:

Se debe prestar atención a la posible salida de aceite del reductor o a la presencia de huellas de aceite, en especial en los retenes, tapas, tapones y superficies de sellado.

Comprobación de los topes de goma:

Se debe comprobar la posible presencia en los topes de goma de daños visibles, como grietas en la superficie, y sustituirlos en caso necesario.

Retirar las acumulaciones de polvo:

Se deben retirar las capas de polvo acumuladas en el reductor; en la versión con tapa de protección, esta se debe retirar y, en caso necesario, limpiar. Seguidamente se debe volver a montar la tapa de protección (véase la página ES-23).

Sustitución de los retenes:

Al sustituir el anillo de cierre, y en función de la versión, se debe prestar atención a que la grasa depositada entre la camisa antipolvo y la cara de obturación sea suficiente.

Si se usan anillos de sellado dobles, una tercera parte del espacio intermedio se debe llenar de grasa.

Cambio de aceite:

¡Deje que el equipo se enfríe antes de comenzar con el trabajo! El aceite debe estar tibio para facilitar el vaciado completo (mejora características de flujo).

- 1. Coloque un recipiente apropiado debajo del tapón y el tapón de drenaje de aceite.
- 2. Retire la ventilación de aire y el tapón de drenaje de aceite.
- 3. Deje que el aceite se drene por completo.
- 4. Vuelva a cerrar el tapón de drenaje.
- 5. Complete la cantidad prescrita de aceite, por el tapón de ventilación (capacidad de llenado de aceite, consulte la placa de identificación del reductor; los lubricantes permitidos, consulte la página ES-33).
- 6. Apriete completamente el tapón de ventilación.
- 7. Deseche el aceite usado de acuerdo con la normativa aplicable.

Revisión general:

La revisión general debe ser llevada a cabo por el fabricante o por un taller autorizado.

Ajuste de la distancia del freno: véase Tabla 7 en la página ES-41.

Repintado posterior: si se pinta o repinta el reductor posterior al suministro, ejes, retenes, áreas mecanizadas de montaje, piezas de goma, tapones de ventilación, visores de vidrio de aceite, las placas de identificación y las calcomanías deben mantenerse libres de pintura y protegidas para evitar daños y mantener legibles los datos importantes y las características y propiedades de cada elemento.

14. Lubricantes

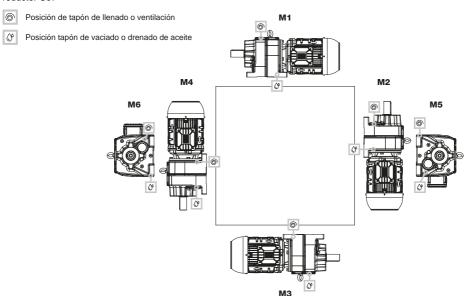
Si no se alcanza ningún acuerdo especial en lo relativo al lubricante, los reductores se suministran con un llenado de fábrica. (Véase la tabla siguiente, campos señalados en color gris). El volumen de llenado de lubricante y el tipo de lubricante están especificados en la placa de características del reductor. Pueden diferir del estándar en función de las condiciones específicas de cada aplicación.

La tabla de lubricantes siguiente muestra los lubricantes homologados para los reductores WG20.

Para reductores coaxiales, de ejes paralelos y ortogonales a temperaturas ambiente: -10 °C hasta + 60 °C (14 °F hasta 140 °F)

© Castrol	ALPHA SP 220	II LUBRICATION	Klüberoil GEM 1-220 N
ARAL	DEGOL BG 220	Mobil	Mobilgear 600 XP 220
bp	Energol GR-XP 220		Omala S2 GX220
ADDINOL	Gear Oil 220 F		

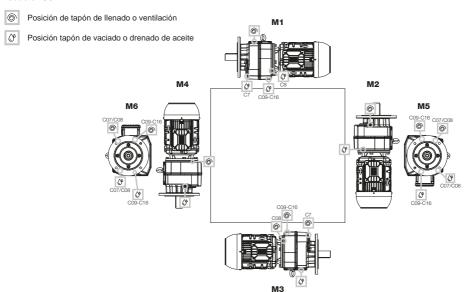
¡No mezclar en ningún caso los distintos lubricantes entre sí!


Si las condiciones ambientales difieren de las mencionadas, consultar el lubricante apropiado. Lubricantes aptos para la industria alimentaria y biodegradables se pueden suministrar bajo petición.

15. Posiciones de montaje y cantidades de lubricante

15.1. Reductor coaxial C

Posiciones de montaje y posición del tornillo de ventilación y drenaje de aceite - Carcasa en ejecución de patas Por defecto, los reductores solo están equipados con ventilación y tornillo de drenaje de aceite a partir del tamaño de reductor C07



Cantidades de lubricante

Etomoo	Flancolón colo con notos		Posiciones de montaje					
Etapas	Ejecución caja con patas	M1	M2	М3	M4	M5	M6	
	C00	0,11	0,3 l	0,3 l	0,3 l	0,2 l	0,21	
	C01	0,11	0,4 l	0,4 l	0,31	0,31	0,31	
	C03	0,31	0,7 I	0,61	0,61	0,5 l	0,4 l	
	C05	0,41	1,2	1,1	1,2	0,81	0,71	
	C06	0,5 l	1,6 l	1,6	1,5 l	1,1	1,0 I	
2	C07	1,61	3,8 I	3,61	4,6 l	2,8	2,4	
2	C08	3,4 l	7,1 l	6,7 l	8,91	4,7	5,4 I	
	C09	10,0 l	13,5 I	13,0 I	15,5 I	10,5 l	12,5 I	
	C10	14,5 l	21,0 I	16,5 I	22,5 I	14,5 I	18,5 l	
	C13	24,0 I	34,0 I	29,0 I	37,5 I	26,0 I	28,5 I	
	C14	36,0 I	49,0 I	43,5 I	56,0 I	36,5	44,0 I	
	C16	64,5 I	92,5 I	77,5 l	98,5 I	64,5 I	75,5 l	
	C03	0,21	0,7 l	0,7 l	0,61	0,4 l	0,4 l	
	C05	0,31	1,1	1,1	1,1	0,7 l	0,7 I	
	C06	0,31	1,5 l	1,6 l	1,4 l	1,0 l	0,91	
	C07	1,5 l	3,6 l	3,5 l	4,4	2,6 l	2,4 l	
3	C08	3,3 l	6,9 I	6,6 l	8,8 I	4,8 I	5,1 l	
3	C09	9,5 I	13,0 I	12,5 I	15,0 I	10,0 l	12,0 I	
	C10	13,5 I	20,0 I	16,0 I	21,5 I	14,0 I	17,5 l	
	C13	22,0 1	31,5 I	27,0 l	34,5 I	25,0 l	26,0 I	
	C14	33,01	45,5 I	40,5 I	51,5 I	34,5 I	40,0 I	
	C16	58,5 I	85,5 I	72,5 I	91,5 I	60,5 I	68,5 I	

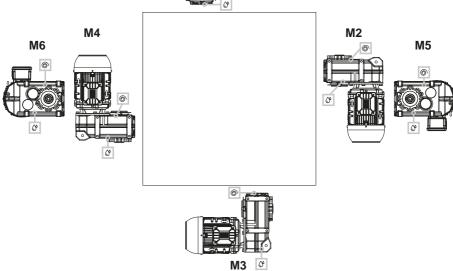
Posiciones de montaje y posición del tornillo de ventilación y drenaje de aceite - Carcasa en ejecución de brida Por defecto, los reductores solo están equipados con ventilación y tornillo de drenaje de aceite a partir del tamaño de reductor C07.

Cantidades de lubricante

Etomoo	Figuralis and any builds	Posiciones de montaje							
Etapas	Ejecución caja con brida	M1	M2	М3	M4	M5	M6		
	C00	0,1 l	0,3 I	0,41	0,3 I	0,2 I	0,3 I		
	C01	0,21	0,4 l	0,5 l	0,5 l	0,3 l	0,4 l		
	C03	0,4 l	0,81	0,7 l	0,8 I	0,5 l	0,5 l		
	C05	0,61	1,3 l	1,2	1,5 l	0,91	1,0 l		
	C06	0,91	1,8 I	1,9 l	2,2	1,9 l	1,4		
2	C07	1,6 l	3,8 I	3,61	4,6 l	2,8 I	2,4		
	C08	3,4	7,1 l	6,7 I	8,9 I	4,7 l	5,4 I		
	C09	10,0 I	13,5 l	13,0 l	15,5 l	10,5 l	12,5 l		
	C10	14,5 I	21,0 l	16,5 l	22,5 l	14,5 l	18,5 l		
	C13	24,0 I	34,0 l	29,0 l	37,5 l	26,0 l	28,5 l		
	C14	36,0 I	49,0 I	43,5 l	56,0 I	36,5	44,0 I		
	C16	64,5 I	92,5 I	77,5 l	98,5 I	64,5 I	75,5 l		
	C03	0,3 l	0,7 I	0,7 l	0,7 l	0,5 l	0,5 l		
	C05	0,5 l	1,2	1,3 l	1,5 l	0,91	1,0 l		
	C06	0,81	1,7 l	1,8 l	2,1	1,2 l	1,3 l		
	C07	1,5 l	3,6 I	3,5 l	4,4	2,6 l	2,4		
3	C08	3,3 l	6,9 I	6,6 I	8,8 I	4,8 I	5,1 l		
3	C09	9,5 l	13,0 l	12,5 l	15,0 l	10,0 l	12,0 l		
	C10	13,5 I	20,0 l	16,0 l	21,5 l	14,0 l	17,5 l		
	C13	22,0	31,5 l	27,0 l	34,5 l	25,0 l	26,0 l		
	C14	33,0	45,5 l	40,5 l	51,5 l	34,5 l	40,0 l		
	C16	58,5 I	85,5 I	72,5 l	91,5 I	60,5 I	68,5 I		

15.2. Reductor de ejes paralelos F

Posiciones de montaje y posición del tornillo de ventilación y drenaje de aceite


Por defecto, los reductores solo están equipados con ventilación y tornillo de drenaje de aceite a partir del tamaño de reductor F06.

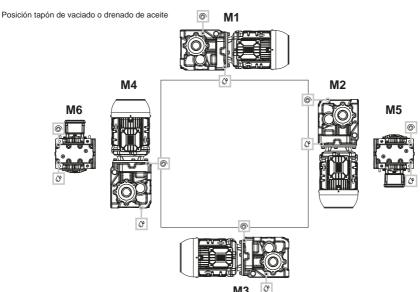
Posición de tapón de llenado o ventilación

0

Posición tapón de vaciado o drenado de aceite

Cantidades de lubricante

Etamaa	Modelo			Posiciones	nes de montaje			
Etapas	Modelo	M1	M2	M3	M4	M5	M6	
	F02	0,5 l	0,7 l	0,61	0,81	0,5 l	0,5 l	
[F03	0,81	1,1	0,7 l	1,1	0,81	0,81	
[F04	1,1	1,8 l	1,1	1,9 l	1,1	1,1 l	
[F05	2,0 l	2,3	1,5 l	2,8 l	1,7 l	1,8 l	
	F06	2,3 l	3,6 l	2,5 l	4,0 l	2,3 l	2,5 l	
2 [F07	4,9 I	6,3 l	4,2	8,01	4,4	4,8 I	
[F08	10,0 l	13,5 l	11,5 l	13,5 l	11,0 l	9,5 I	
	F09	17,0 I	22,0 I	20,0 I	26,0 I	19,0 l	16,0 l	
	F10	23,0 1	33,5 I	29,5 I	37,0 I	27,5 l	24,0 l	
	F12	35,0 l	55,5 l	46,5 I	64,5 I	28,5 l	40,5 I	
	F15	60,0 I	105,0 I	88,0 I	100,5 I	50,5 l	75,5 l	
	F04	1,5 l	1,7	1,1	1,8 l	1,0 l	1,1	
	F05	2,3 l	2,2	1,4	2,5 l	1,6 l	1,5 l	
	F06	2,7	3,5 l	2,3 l	3,81	2,4	2,3 l	
	F07	5,8 I	6,21	3,91	7,7	4,4	4,5 I	
3 [F08	8,5 l	14,5 l	12,5 I	15,0 l	7,0 l	10,5 l	
[F09	16,0 I	24,0 I	21,5 I	28,0 I	13,5 l	18,0 l	
	F10	22,0 I	36,5 I	32,5 I	41,0 I	19,5 l	27,5 l	
	F12	36,5 I	51,0 l	42,5 I	58,5 I	40,5 I	35,5 l	
	F15	69,0 I	101,5 l	83,01	108,5 l	78,5 I	71,5 l	

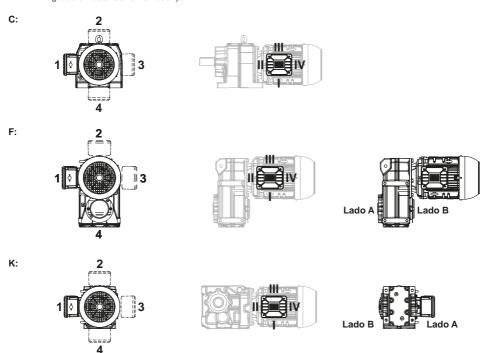


15.3. Reductores ortogonales de engranajes K

Posiciones de montaje y posición del tornillo de ventilación y drenaje de aceite

Por defeco, los reductores solo están equipados con ventilación y tornillo de drenaje de aceite a partir del tamaño de reductor K06.

Posición de tapón de llenado o ventilación


Cantidades de lubricante

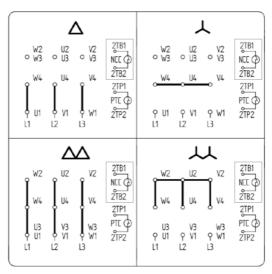
	Modelo	Posiciones de montaje								
Etapas	Wiodelo	M1	M2	М3	M4	M5	M6			
2	K02	0,4 l	0,81	0,7 l	0,91	0,5 l	0,6 I			
	K03	0,4 l	1,0 l	1,2 l	1,3 l	1,0 I	1,0 l			
	K04	0,61	1,6 l	1,9 l	2,1	1,7 l	1,7 I			
	K05	0,81	2,1	2,6 l	3,1	2,1	2,2			
	K06	0,81	2,0 l	2,7	3,0 l	2,2	2,4			
2	K07	1,5 l	3,5 l	4,3 l	5,3 l	3,7 I	4,1 l			
3	K08	3,2 l	7,0 I	8,0 I	9,2 l	7,2	7,6 I			
	K09	5,8 l	11,5 l	13,0 l	16,6 l	15,6 l	15,6 l			
	K10	9,1 l	18,3 l	21,8	26,6 l	24,7	24,8 I			
	K12	16,3 l	26,4 I	28,8 I	41,4 l	34,7	36,2 I			
	K15	28.01	50.61	65.0 I	79.5	71.8	71.1 I			

16. Posición de la caja de bornas y entrada de cables

Figura 15: Posibles posiciones de la caja de bornes 1 a 4 (posición estándar en el lado 1) y entradas de cable I a IV (posición estándar en el lado I)

17. Conexiones de caja de bornas

		Ratio voltages para series			
Posibles co	nexiones	Ratio potencia P _N	VSD en operación		
	Triangulo	230 V a 50 Hz	-	Λ	400 V,
	mangulo	265 V a 60 Hz	265 V a 60 Hz	\triangle	87 Hz
\wedge	Triangulo -	115 V a 50 Hz	-	\wedge \wedge	230 V,
	Triangulo	132 V a 60 Hz	132 V a 60 Hz		100 Hz
	Estrella	400 V a 50 Hz	-	1 1	400 V,
	(conexión básica)	460 V a 60 Hz	460 V a 60 Hz		100 Hz
	Estrella - Estrella	200 V a 50 Hz	-		460 V,
\triangle	Estrella - Estrella	230 V a 60 Hz 230 V a 60 Hz		$\wedge \wedge$	120 Hz
]				


			itatio voltages para series	5 111, 221 (ILO 112 - 230)		
Posibles conexiones		Ratio potencia P _N	VSD en operación			
	Λ	Triangulo 400 V a 50 Hz -				
	\triangle	(conexión básica)	460 V a 60 Hz	460 V a 60 Hz	\wedge \wedge	400 V,
	ΛΛ	Triangulo -	200 V a 50 Hz	-		100 Hz
		Triangulo	230 V a 60 Hz	230 V a 60 Hz 230 V a 60 Hz		
	1	Estrella	690 V a 50 Hz	-		
	\wedge	Estrella	-	-	\wedge \wedge	460 V,
	Estrella - Estrella		346 V a 50 Hz	-		120 Hz
			400 V a 60 Hz	400 V a 60 Hz		

^{*} Tolerancias de tensiones nominales de acuerdo con el rango A según DIN EN 60034-1 (ver catálogo técnico)

El siguiente diagrama de conexión es válido para motores de sistema modular de las series 11N y 11P en tamaños de cajas de 63 a 132 y 22P en tamaños de caja de 160 a 250.

Figura 16: Conexiones de caja de bornas - Motores de las series 11N, 11P y 22P

El interruptor bimetálico (2TB1 / 2TB2) solo está disponible para la serie de motores 11

Tabla 5: Par de apriete para caja de bornes

Rosca	Par de apriete M _a [Nm]
M4	0,7 - 1,0
M5	1,6 - 2,2
M6	2,2 - 3,5
M8	6 - 8
M10	10 - 14

18. Dispositivos opcionales del motor

El freno, el encoder incremental, la sonda de temperatura, la resistencia de caldeo, la ventilación forzada, etc., se encuentran disponibles mediante un pedido especial. Los dispositivos adicionales se deben conectar basándose en los esquemas de conexiones que se suministran adjuntos.

18.1. Resistencia de caldeo

Si las condiciones climáticas son especiales, p. ej., en caso de fuertes oscilaciones de la temperatura o de detención prolongada de los motores en atmósferas de gran humedad, se puede optar por instalar una resistencia de caldeo. La conexión del elemento calefactor se puede consultar en el interior de la caja de bornas del motor.

♠ ¡PELIGRO!

Asegurarse siempre de desconectar la calefacción de reposo opcional antes de conectar el sistema.

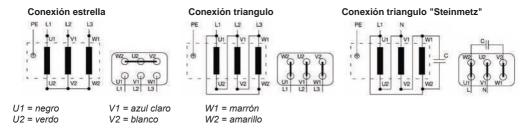
18.2. Orificio para el agua de condensación

La humedad del aire se puede condensar en el interior de los motores que se encuentran expuestos a fuertes oscilaciones de temperatura o a condiciones climáticas extremas. En este caso es recomendable practicar un orificio para evacuar el agua de condensación.

- En función de las condiciones ambientales y de funcionamiento, abra el tapón del orificio para evacuar el agua de condensación. Acto seguido, cierre de nuevo el tapón.
- Si el motor cuenta con orificios para el agua de condensación, se debe prestar atención a que la posición de montaje sea la correcta.

Figura 17: Detalle de dispositivo de drenaje en escuso delantero

18.3. Ventilación forzada


♠ ¡CUIDADO!

- La ventilación forzada se debe conectar a una tensión de alimentación externa guiándose por el esquema de conexiones adjunto (véase la caja de bornas de la ventilación forzada).
- Si el motor funciona por medio de un convertidor de frecuencia, no está permitido conectar la ventilación forzada al convertidor de frecuencia, sino que se debe conectar a una tensión de alimentación EXTERNA.

Tabla 6: Rango de voltaje de la ventilación forzada

Tamaño IEC	Fase / Conexionado	Rango de voltaje [V]						
Talliano IEC	rase / Collexionado	50 Hz	60 Hz					
	3~ / Estrella	346 - 525	380 - 575					
63 - 250	3~ / Triangulo	200 - 303	220 - 332					
	1~ / Triangulo "Steinmetz"	230 - 277	230 - 277					

18.4. Sondas de temperatura – Interruptores bimetálicos (TH)

Los termostatos tienen pequeñas tiras bimetálicas que hacen o rompen un contacto cuando se alcanza la temperatura crítica. El contacto de ruptura abre el circuito de campo y desconecta la fuente de alimentación del motor. Los termostatos solo están disponibles para la serie de motores 11 (tamaños de bastidor 63 a 132).

Bloque designación de terminal en la caja de conexiones: 2TB1 / 2TB2 (véase la página ES-39)

18.5. Sensor de temperatura tipo posistor (TF)

Los sensores de temperatura tipo termistor son semiconductores cuya resistencia óhmica aumenta de manera muy acusada al alcanzar la temperatura de respuesta de referencia.

Además de los sensores tipo termistor se necesita un equipo disparador. El relé dispuesto en el equipo disparador con un contacto inversor se puede utilizar en función de las necesidades para abrir el circuito de excitación del contactor del motor o para activar una señal de advertencia.

Designación en la caja de bornas: 2TP1 / 2TP2 (véase la página ES-39)

18.6. Freno

El freno mono disco por presión elástica dispone de ventilación eléctrica. El procedimiento de frenado se efectúa mecánicamente al desactivar la tensión.

Los frenos se suministran ajustados al par de frenado que corresponda.

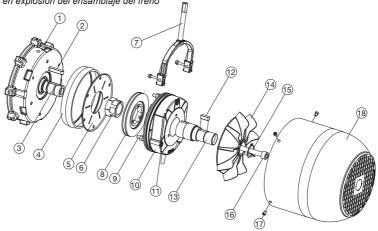
Conexión del freno:

Conectar la excitación del freno conforme al esquema de conexiones que se suministra adjunto.

Mantenimiento:

Los frenos por presión elástica están prácticamente exentos de mantenimiento. La distancia del freno "a" se debe comprobar periódicamente a fin de garantizar la correcta ventilación del freno. Si resulta necesario ajustar la distancia del freno "a", se debe llevar a cabo conforme a la Tabla 7.

Tabla 7: Distancia del freno


Par de frenac	do	BR2	BR4	BR5	BR8	BR10	BR16	BR20	BR32	BR40	BR60	BR100	BR150	BR250	BR400
a (normal)	[mm]	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,4	0,4	0,5	0,5
a (máximo)	[mm]	0,6	0,5	0,6	0,5	0,7	0,5	0,8	0,75	0,9	1,0	1,1	1,1	1,2	1,2

Reajuste de la distancia del freno (véase Figura 18 en la página ES-42):

- 1. Afloje media vuelta los tres tornillos de retención (11).
- 2. Enrosque en sentido contrario a las agujas del reloj los tornillos tipo camisa (9) en el cuerpo del imán (10).
- 3. Gire en el sentido de las agujas del reloj los tres tornillos de retención (11) hasta alcanzar la distancia nominal (véase la Tabla 7) entre el cuerpo del imán (10) y el disco del inducido (8).
- 4. Vuelva a desenroscar en el sentido de las agujas del reloj los tres tornillos tipo camisa (9) extrayéndolos del cuerpo del imán (10) hasta que hagan tope y reapriete los tornillos de retención (11). Use una galga de espesor para comprobar la uniformidad de la distancia "a" y corríjala si es necesario.

Figura 18: Vista en explosión del ensamblaje del freno

(1)	Placa de cojinete del freno	(10)	Cuerpo del imán
(2)	Chavetero	(11)	Tornillos cilíndricos con hexágono interior
(3)	Eje	(12)	Chavetero
(4)	Aro de protección	(13)	Prolongación del eje del freno
(5)	Placa de fricción	(14)	Paletas
(6)	Cubo dentado arrastrador	(15)	Anillo de retención
(7)	Manivela para accionamiento manual (opcional)	(16)	Tornillos cilíndricos con hexágono interior
(8)	Disco de freno con ferodo	(17)	Tornillos de cubre ventiador

(18)

Caperuza del ventilador (versión de freno)

18.6.1. Ventilación manual

Tornillos de ajuste

Sirve para ventilar el freno mecánicamente si el suministro eléctrico falla. Al accionar la palanca de accionamiento manual, el disco del inducido se aprieta y el freno se libera.

(9)

iCUIDADO!

Por motivos de seguridad, no se permite realizar ningún cambio en el ajuste de la ventilación manual.

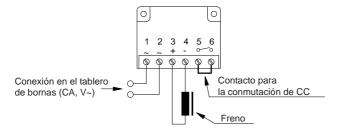
18.6.2. Dispositivo de retención de la palanca de mano

Durante la realización de trabajos de servicio, la palanca de desbloqueo manual se puede fijar con un dispositivo de retención.

iCUIDADO!

Solo se permite la puesta en funcionamiento del motor una vez desactivado el dispositivo de retención.

18.6.3.Rectificador


Los motores freno se entregan de serie con un rectificador conectado para la conmutación en la parte de corriente alterna. Para la conmutación en la parte de corriente continua se debe retirar el puente situado entre las bornas 5 y 6 y conectar un contacto de conmutación.

Solo se permite encender el motor si tiene el freno conectado. (¡Comprobar!)

Figura 19: Rectificador

Alimentación eléctrica:

La bobina de freno de corriente continua se alimenta normalmente a través de un rectificador montado en la caja de bornas del motor. Los rectificadores están conectados a varistores para su protección contra sobretensiones. Temperatura ambiental máxima +80 °C.

¡SI la frecuencia de conmutación es superior a 1 Hz, se ruega consultar la solicitación del rectificador!

La conexión del sistema de freno se debe llevar a cabo a través de un rectificador montado en la caja de bornas y conforme al esquema de conexiones que se entrega adjunto.

Rectificador de media onda (estándar), conexión:

Tensión alterna 100%, p. ej., 400 V~

Tensión continua 45%, p. ej., 180 V=

Rectificador de puente, conexión:

Tensión alternaTensión continua100%, p. ej., 230 V~90%, p. ej., 207 V=

¡CUIDADO!

En caso de funcionamiento de un motor freno con convertidor de frecuencia, la bobina de freno se debe conectar a un suministro de tensión externo.

18.6.4.Lector de giro

Este encoder es un aparato de medición de gran precisión. A fin de garantizar el funcionamiento sin problemas del encoder y conservar la prestación de garantía, se deben tener en cuenta los datos e indicaciones que se recogen en las hojas de datos.

Es imprescindible tener en cuenta los puntos siguientes:

- Prohibido desarmar o modificar total o parcialmente el encoder.
- Prohibido manipular el eje a posteriori (rectificar, taladrar, serrar, etc.). De lo contrario, la precisión del encoder y la fiabilidad del rodamiento y de la junta sufrirían daños.
- No usar nunca el martillo para alinear el aparato.
- Evitar a toda costa exponerlo a golpes.
- No permitir que la solicitación del eje del encoder supere los valores indicados en las hojas de datos.
- No conectar entre sí de forma rígida por los ejes y bridas el transmisor de giro y el equipo de accionamiento.
- No utilizar en ningún caso el transmisor de giro montado como ayuda para izar la máquina de trabajo.
- No utilizar en ningún caso el transmisor de giro montado para encaramarse encima.

Datos técnicos Encoder estándar:

Tipo	Voltage	Pulsos	Señal de salida		
Kübler 5020	10 - 30 V	1024	HTL		
Kübler A02H (Heavy Duty)	10 - 30 V	1024	HTL		

Tabla 8: Definición de pins encodar estándar:

	SEÑAL	GRD	I K	+ UB Sens	0	O _{INV}	Α	A _{INV}	-	В	-	0 V	0 V Sens	+UB	U _{AS}
<u>~</u>	M23 x 1 Caja abridada		1	2	3	4	5	6	7	8	9	10	11	12	-
KÜBLEI	Cable PVC	PH	PK	BU/ RD	BU	RD	GN	YE	-	GY	-	WH	GY/ PK	BN	-
	Cable PUR cable HT	PH	PK	BN*	BU	RD	GN	YE	-	GY	-	WH°	WH*	BN°	-

Cód.	Color	Cód.	Color	Cód.	Color	Cód.	Color	Cód.	Color
BK	Negro	GN	Verde	RD	Rojo	YE	Amarillo		El escudo está
BN	Marrón	GY	Gris	VT	Violeta	*	Cable delgado	PH	unido a la carca-
BU	Azul	PK	Rosa	WH	Blanco	0	Cable grueso		sa del conector

19. Tabla de pares de apriete de los tornillos

Válido para tornillos de la clase de resistencia 8.8:

Tabla 9: Pares de apriete de los tornillos

Par de apriete Ma [Nm] - Tolerancia +10 %										
Rosca	Tornillos de la clase de resistencia 8.8	Tornillos de la clase de resistencia 12.9								
M5	5,5	8,0	10							
M6	10	14	18							
M8	25	33	43							
M10	45	65	80							
M12	75	105	135							
M16	190	270	340							
M20	380	530	670							
M24	650	900	1150							
M30	1300	1800	2300							

20. Eliminación de desechos

Tenga en cuenta las normativas nacionales vigentes relativas a la eliminación de desechos.

Los aceites y grasas, así como los residuos que contienen aceites y grasas, suponen un gran peligro potencial para el medio ambiente. ¡Por ello se deben eliminar correctamente!

Piezas del motorreductor	Material
Carcasa, piezas de la carcasa (tapa de la entrada, adaptador, bridas,)	Aluminio
Piezas internas del reductor (ruedas dentadas, chaveteros, ejes,)	Acero
Retenes	Elastómero con acero
Juntas planas	Sin amianto
Aceite del reductor	Aceite mineral aditivado

21. Declaración de incorporación

Declaración de incorporación

conforme a la Directiva 2006/42/CE relativa a las máquinas, anexo II B

Producto:

Designación de modelo:

- Motorreductores coaxiales WG20
- Motorreductores ejes paralelos WG20
- Motorreductores ortogonales WG20

C.

F.

Fabricante:

WATT DRIVE Antriebstechnik GmbH, Wöllersdorfer Straße 68 2753 Markt Piesting - Austria

Representante autorizado para reunir la documentación técnica:

Norbert Reisner - Wöllersdorfer Straße 68 - 2753 Markt Piesting - Austria

El fabricante declara por la presente que las máquinas incompletas antes mencionades:

- Cumplen los requisitos básicos de la Directiva 2006/42/CE.
- Disponen de una documentación técnica que ha sido elaborada conforme al anexo VII, parte B.
- Los documentos técnicos especiales para maquinaria parcialmente completada se han creado y pueden ponerse a disposición de las autoridades nacionales en respuesta a una solicitud razonable.
- Su puesta en marcha está prohibida hasta que se hayan implementado de acuerdo con las instruciones de montaje y se presente una Declaración de conformidad CE para toda la máquina de acuerdo con la Directiva 2006/42/EC.

2006/42/EC

Disposiciones pertinentes aplicadas:

Directiva CE relativa a las máguinas

Seguridad de las máquinas
 EN ISO 12100:2010

Equipo eléctrico
EN 60204 -1:2006 + A1:2009 + AC:2010

Resguardos EN ISO 14120:2015

■ Distancias de seguridad EN ISO 13857:2008

Máguinas eléctricas rotativas

EN 60034-1:2010 + AC:2010, EN 60034-2-1:2007, EN 60034-5:2001 + A1:2007, EN 60034-6:1993. EN 60034-7:1993 + A1:2001. EN 60034-8:2007 + A1:2014.

EN 60034-9:2005 + A1:2007, EN 60034-11:2004, EN 60034-12:2002 + A1:2007,

EN 60034-14:2004 + A1:2007, EN 60034-30:2009

La versión original del manual de montaje de la máquina incompleta es la escrita en alemán.

Markt Piesting, 26.4.2017

Lugar y fecha de expedición

Klaus Sirrenberg - Managing Director

22. Declaración de conformidad UE ATEX 2014/34/UE

Declaración de conformidad UE

conforme a la Directiva 2014/34/UE de protección contra las explosiones

Designación de modelo:

Productos de la serie de motorreductores WG20/MAS:

Motorreductores coaxiales
Motorreductores pendulares
Motorreductores ejes paralelos
Motorreductores de tornillo sin fin y engranaje recto
Motorreductores ortogonales

Motorreductores planos cónicos

F./F. - /S. K./K. - /C.

C./H. -/A.

Fabricante:

WATT DRIVE Antriebstechnik GmbH, Wöllersdorfer Straße 68 2753 Markt Piesting - Austria

El fabricante declara la responsabilidad exclusiva de los productos mencionados anteriormente para:

- Zona 2 y 22
- Grupo II
- Categoria 3G y 3D

Clasificación:

- II 3G Ex h IIC T4 Gc / II 3G Ex ec IIC T3 Gc
- II 3D Ex h IIIC T125°C Dc / II 3D Ex tc IIIC T125°C Dc

Disposiciones pertinentes aplicadas:

- EN 80079-36:2016
- EN 80079-37:2016
- EN 60079-0:2012
- EN 60079-15:2010
- EN 60079-31:2014

Markt Piesting, 17.10.2018

Lugar y fecha de expedición

Kíaus Sirrenberg - Managing Director

Declaración de conformidad UE

conforme a la Directiva 2014/34/UE de protección contra las explosiones

Productos de la serie de reductores WG20/MAS:

Designación de modelo:

Reductores coaxiales con adaptador de motor o módulo para eje de introducción	C./H.
Reductores pendulares con adaptador de motor o módulo para eje de introducción	- /A.
Reductores ejes paralelos con adaptador de motor	
o módulo para eje de introducción	F./F.
Reductores de tornillo sin fin y engranaje recto con adaptador de motor	
o módulo para eje de introducción	- /S.
Reductores ortogonales con adaptador de motor	
o módulo para eje de introducción	K./K.
Reductores planos cónicos con adaptador de motor	
o módulo para eje de introducción	- /C

Fabricante:

WATT DRIVE Antriebstechnik GmbH, Wöllersdorfer Straße 68 2753 Markt Piesting - Austria

El fabricante declara la responsabilidad exclusiva de los productos mencionados anteriormente para:

- Zona 1 y 21, Grupo II, Categoría 2G y 2D
- Zona 2 y 22, Grupo II, Categoría 3G y 3D

Clasificación:

- II 2G Ex h IIC T4 Gb
- II 2D Ex h IIIC T125°C Db
- II 3G Ex h IIC T4 Gc
- II 3D Ex h IIIC T125°C Dc

Disposiciones pertinentes aplicadas:

- EN 80079-36:2016
- EN 80079-37:2016

WATT DRIVE Antriebstechnik GmbH deposita la documentación exigida por la Directiva 2014/34/UE en el organismo notificado siguiente:

TÜV Austria, No. 0408

Markt Piesting, 18.2.2020

Lugar y fecha de expedición

Klaus Sirrenberg - Managing Director

23. Declaración de conformidad UE Directiva 2014/35/UE de baja tensión

Declaración de conformidad UE

conforme a la Directiva 2014/35/UE de baja tensión

Producto:

- Motores de CA asíncronos con rotor de jaula de ardilla
- Motores de inducción monofásicos con rotor de jaula de ardilla

Tamaño constructivo de motor IEC: 56 - 355

Serie:

WA_	7WA_	70 WA_	7B WA_	2A WA_	2B WA_	3A WA_	3B WA_	3C WA_
WP_	7WP_	70 WP_	7B WP_	2A WP_	2B WP_	3A WP_	3B WP_	3C WP_
11N	11H	11P	11S	22P	22S	M31_	M32_	M33_

Fabricante:

WATT DRIVE Antriebstechnik GmbH, Wöllersdorfer Straße 68 2753 Markt Piesting - Austria

Esta declaración de conformidad se emite bajo la exclusiva responsabilidad del fabricante.

El objeto de la declaración descrita anteriormente, está en conformidad con la legislación de armonización de la Unión:

- Directiva de baja tensión 2014/35/UE
 Directiva ErP 2009/125/CE ¹⁾
- Directiva CEM 2014/30/UE
 Seguridad de equipos eléctricos
- EN60204-1:2006 + A1:2009 + AC:2010, EN 60204-11:2000 + AC:2010

 Máguinas eléctricas rotativas
- EN 60034-1:2010 + AC:2010, EN 60034-2-1:2007, EN 60034-5:2001 + A1:2007, EN 60034-6:1993, EN 60034-7:1993 + A1:2001, EN 60034-8:2007 + A1:2014, EN 60034-9:2005 + A1:2007, EN 60034-11:2004, EN 60034-12:2002 + A1:2007, EN 60034-14:2004 + A1:2007, EN 60034-30:2009

Markt Piesting, 14.2.2019

Place and date of issue

Klaus Sirrenberg - Managing Director

Los productos amparados por esta Directiva ErP cumplen con los requisitos del Reglamento (CE) No. 640/2009 del 22 de julio respecto Reglamento (UE) No. 4/2014 del 6 de enero de 2014.

Watt Drive Antriebstechnik GmbH - WEG Group

Wöllersdorfer Straße 68, 2753 Markt Piesting, Austria Tel: +43 (0)2633 / 404-0, Fax: +43 (0)2633 / 404-220

E-mail: info-at@weg.net Web: www.wattdrive.com

Código: 50069690 | Rev.: 05 | Fecha (m/a): 02/2021 Lengua: Español, Documento original: Alemán

Los datos indicados pueden ser objeto de modificaciones sin previo aviso.